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Processing of two-tone stimuli by the auditory system introduces
prominent masking of one frequency component by the other as
well as additional “phantom” tones that are absent in the sound
input. Mechanical correlates of these psychophysical phenomena
have been observed in sound-evoked mechanical vibrations of the
mammalian cochlea and are thought to originate in sensory hair
cells from the intrinsic nonlinearity associated with mechano-elec-
trical transduction by ion channels. However, nonlinearity of the
transducer is not sufficient to explain the rich phenomenology
of two-tone interferences in hearing. Here we show that active
oscillatory movements of single hair-cell bundles elicit two-tone
suppression and distortions that are shaped by nonlinear amplifi-
cation of periodic stimuli near the characteristic frequency of spon-
taneous oscillations. When both stimulus frequencies enter the
bandwidth of the hair-bundle amplifier, two-tone interferences
display level functions that are characteristic both of human psy-
choacoustics and of in vivo mechanical measurements in auditory
organs. Our work distinguishes the frequency-dependent nonli-
nearity that emerges from the active process that drives the hair
bundle into spontaneous oscillations from the passive nonlinear
compliance associated with the direct gating of transduction chan-
nels by mechanical force. Numerical simulations based on a generic
description of an active dynamical system poised near an oscilla-
tory instability—a Hopf bifurcation—account quantitatively for our
experimental observations. In return, we conclude that the proper-
ties of two-tone interferences in hearing betray the workings of
self-sustained “critical” oscillators, which function as nonlinear
amplifying elements in the inner ear.

auditory amplification ∣ combination tones ∣ hair-bundle motility ∣
Tartini tones

The human ear does not work as a high-fidelity sound receiver.
First, the perceived loudness of a tone diminishes in the pre-

sence of a second tone at a nearby frequency, a phenomenon
called masking (1). Second, a person listening simultaneously to
two pure tones f 1 and f 2 can hear not only these frequencies but
also additional tones that are not present in the acoustic stimulus
(2, 3). These “phantom” tones have been recognized as distortion
products of the input; they are produced at linear combinations
of f 1 and f 2. Any device evinces nonlinearity when the stimulus
becomes too intense to elicit a proportional response. In the in-
ner ear, mechano-electrical transduction by sensory hair cells is
usually accepted as the dominant source of two-tone interfer-
ences, for the sigmoidal relation between hair-bundle deflections
and transduction currents provides a saturating nonlinearity that
distorts receptor potentials (4, 5). Because gating of transduction
channels is directly coupled to tip-link tension, the hair-cell bun-
dle also acts as a nonlinear spring (6) that produces mechanical
distortions of sound-evoked vibrations (7). If the transduction
process only displayed a static nonlinearity, for which the output
can be expressed as a power-series expansion of the input (see
section 1 in SI Text), the distortion would vanish for weak stimuli
and become more and more pronounced as the magnitude of
stimulation increases. For a two-tone stimulus, the level of distor-

tion relative to that of the primaries at f 1 and f 2 would in turn
grow superlinearly.

The behavior of the auditory nonlinearity is in striking contrast
to that expected from a static nonlinearity (3, 8). First, the most
prominent “phantom tone” in the auditory percept, which occurs
at 2f 1 − f 2 when the frequency ratio f 2∕f 1 is near 1.2, is detected
even at low levels of stimulation. Second, its magnitude increases
at about the same rate as the stimulus, so that its relative level
remains practically constant at 15–20% over a broad range of
sound levels. In addition, both masking and phantom tones dis-
play a sharp dependence on the frequency separation between
the two components of the stimulus, indicating that the auditory
nonlinearity must be coupled to a filter that allows interaction of
neighboring frequency components only.

Two-tone suppression and distortions have been observed in
vivo on the basilar membrane that supports the organ of Corti of
the mammalian cochlea (9, 10). These phenomena appear to be
intimately related to the nonlinear, frequency-selective active
process that enhances sensitivity, sharpens frequency tuning and
compresses six orders of magnitudes of sound-pressure levels into
a much narrower range of vibration amplitudes (11). Distorted
cochlear vibrations are strong enough to be reemitted in the
ear canal as distortion-product oto-acoustic emissions (DPOAEs)
that contain the cubic difference tone 2f 1 − f 2 (12, 13). Notably,
the ears of nonmammalian vertebrates produce similar distor-
tion-product oto-acoustic emissions (14–16). Like in mammals,
this manifestation of nonlinear inner-ear mechanics is associated
with high sensitivity and sharp frequency selectivity (17), which
are key specifications of active hearing.

Two forms of motility by mechanosensory hair cells have been
implicated in the active process (18). The hair cell can power
active movements of its mechanosensory hair bundle, including
spontaneous oscillations that have been shown in nonmammalian
vertebrates to provide nonlinear and frequency-selective ampli-
fication of sinusoidal stimuli (19–22). In mammals, active hair-
bundle motility coexists with membrane-based somatic motility
(23, 24), a biological form of piezoelectricity by which the soma
of an outer hair cell changes length in response to variations of
its membrane potential (25). Although electromotility appears to
be necessary for cochlear amplification (26, 27), this process is by
itself linear over the physiological range of receptor potentials. It
is likely that hair-bundle and somatic motility cooperate to med-
iate the active process in the mammalian cochlea (28–30), with
the hair bundle bringing the nonlinearity that is associated with
both cochlear amplification and two-tone interferences (31, 32).

In this work, we evaluate the effects of active hair-bundle
oscillations on two-tone suppression and distortions by a single
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hair cell. For stimulation near the characteristic frequency of
spontaneous oscillations, we show that a hair bundle produces
two-tone interferences with level functions that are characteristic
of both human psychoacoustics and in vivo measurements of
inner-ear mechanics. We interpret our observations within the
general theoretical framework of “critical oscillators,” which are
active dynamical systems poised near an oscillatory instability
called a Hopf bifurcation.

Results
Two-Tone Suppression. We took advantage of a two-compartment
preparation of the bullfrog’s sacculus (33) in which hair cells
routinely power spontaneous oscillations of their hair bundle
at a characteristic frequency fC ¼ 5–80 Hz. Using a flexible glass
fiber, we applied periodic forces F to the top of a hair bundle.
Previous work indicates that oscillatory hair bundles actively
resonate with pure tones FðtÞ ¼ F1 sinð2πf 1tÞ and amplify their
responsiveness at the frequency f 1 of stimulation (20, 34). Signif-
icant amplification happens only when stimulus frequencies
fall within a limited bandwidth that is centered at the character-
istic frequency of oscillation fC. Accordingly, for small stimulus
amplitudes F1 of a test tone, a hair bundle displayed a larger re-
sponse near its frequency of spontaneous oscillation (f 1 ≅ fC;
Fig. 1A, black disks) than at a higher frequency (f 1 ≅ 10 × fC;
Fig. 1B, black disks). Amplification at resonance (f 1 ≅ fC) was
associated with a compressive nonlinearity that accommodated
a large range of stimulus amplitudes (0.5–50 pN) into a narrower
range of hair-bundle movements (3–40 nm). In contrast, stimula-
tion off-resonance (f 1 ≅ 10 × f C) elicited passive hair-bundle
movements that grew almost in proportion to the stimulus,
although a small, but noticeable, deviation from linearity was
observed for forces near 10 pN (Fig. 1B, black disks).

By applying two-tone stimuli FðtÞ ¼ F1 sinð2πf 1tÞþ
F2 sinð2πf 2tÞ, we studied how the hair-bundle response to a test
tone (frequency f 1) was affected by the addition of a second tone
(frequency f 2) at a nearby frequency. For stimuli at resonance (f 1
and f 2 near fC), we observed that the response to the test tone
was partially suppressed by the additional tone (Fig. 1A). For
intense masker levels, the test tone displayed a level function
that was nearly linear, resembling that obtained off-resonance in
response to the test tone only (Fig. 1B). Amplification of the test
tone thus appeared to be turned off by the masker tone. As
expected from a complete loss of gain from active hair-bundle
motility, the amplitude of stimulation that was required to elicit
a response beyond a given threshold was increased by as much
as 10-fold. The response at f 2 was also suppressed by the stimulus
at f 1 (Fig. 1C). When the amplitudes of the two tones were
dissimilar (e.g., F2∕F1 ≅ 10 with F1 ¼ 1 pN in Fig. 1A), the re-
sponse to the stronger tone was almost unaffected whereas the
response to the weaker tone was largely suppressed, decreasing
by about 90%. The contrast between the frequency components
of the two-tone stimulus was thus enhanced. Remarkably, the
phenomenon of two-tone suppression, which was so compelling
at resonance, was barely observed when the hair bundle was sti-
mulated off-resonance (Fig. 1B and D).

To further characterize the frequency specificity of two-tone
suppression, we measured how the amplified response to a test
tone at resonance was affected by an additional tone with the
same amplitude but varying frequency (Fig. 2). We used low
stimulation levels, for which amplification was maximal (Fig. 1).
When the frequency difference between the two tones was large
enough, the response to the test tone was the same as when this
tone was presented alone. As the frequency mismatch was re-
duced, we observed that the response to the test tone was increas-
ingly suppressed. This response reached a minimum, and two-
tone suppression was thus maximal, when both stimuli had about
the same frequency. Correspondingly, the response to the masker
tone increased as its frequency approached the characteristic

frequency of the hair-bundle oscillator but, as the result of mutual
suppression of the two tones, never rose to the maximal amplified
value that would have been reached, had this tone been pre-
sented alone.

Fig. 1. Two-tone suppression. (A) The magnitude of the bundle motion’s
Fourier component at the frequency f1 ¼ 13 Hz of a test tone is plotted as
a function of the amplitude F1 of this component of the two-tone stimulus.
The various symbols correspond to different amplitudes F2 (•, 0 pN; △, 2 pN;
⧫, 5 pN; ▿, 10 pN) of the masker tone that was added to the test tone at a
nearby frequency f2 ¼ 12 Hz. Stimulation was here delivered at resonance—
i.e., near the bundle’s characteristic frequency fC ¼ 11 Hz of spontaneous os-
cillation. (B) Same as in A but for stimulation off-resonance, with f1 ¼ 130 Hz
and f2 ¼ 120 Hz that are both one order of magnitude larger than fC . (C)
Using the same data as in A, the response at f2, normalized to its value when
F1 ¼ 0, is here plotted as a function of the amplitude F1 for different ampli-
tudes F2. (D) Same as in C but for stimulation at f1 ¼ 130 Hz and f2 ¼ 120 Hz.
All data from same cell.

Fig. 2. Frequency specificity of two-tone suppression. The two components
of the stimulus had here the same amplitude F1 ¼ F2 ¼ 2 pN. The frequency
f1 ¼ 24 Hz of the test tone was fixed near the bundle’s characteristic fre-
quency of oscillation fC ¼ 23 Hz, while the frequency f2 of the masker tone
was varied. The magnitude of bundle motion, at frequencies f1 (●) and f2
(○), is plotted as a function of the frequency separation Δf ¼ f2 − f1. The
dashed line represents the response level when the test tone was presented
alone.
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Two-Tone Distortions. A two-tone stimulus constructed from the
sum of two sinusoids with equal amplitudes F̄ and nearby fre-
quencies produces a beating pattern. Although this pattern domi-
nated the waveform of hair-bundle movement, filtering the
primary frequencies of motion at f 1 and f 2 revealed that the hair
bundle distorted its response to the stimulus (Fig. 3). The distor-
tion was significantly larger in magnitude for stimulation at reso-
nance than off-resonance and its waveform was qualitatively
different in the two cases. The spectral density of hair-bundle
motion disclosed the presence of discrete frequency components
that were not present in the stimulus. In particular, for moderate
to intense stimuli (F̄ ≅ 5–10 pN), the hair bundle produced a
series of odd distortion products at frequencies f 1 − kΔf and
f 2 þ kΔf , where k is a positive integer (k < 6) and Δf ¼
f 2 − f 1. Distortion products of increasing order k displayed a
hierarchy of magnitude Xk that was well described by an expo-
nential decay Xkþ1∕Xk ¼ expð−λÞ, where λ is a fit parameter.

At resonance (f 1 and f 2 near fC), a condition that maximizes
amplification by active hair-bundle motility (34), stimulation of
increasing magnitude enriched the spectrum of hair-bundle
movements almost exclusively near the primaries (Fig. 3 A and
B). The most prominent components of distortion were the cubic
difference products at frequencies 2f 1 − f 2 and 2f 2 − f 1. These
products, which had nearly the same magnitude, could be as
much as fourfold more intense than the quadratic summation
tone f 1 þ f 2 for weak stimuli, but cubic and quadratic products
reached similar levels for intense stimuli (Fig. 4A). In addition,
the cubic products appeared at low level of stimulation
(F̄ ≥ 1 pN), showed a linear growth for weak stimuli and a com-
pressive growth for intermediate stimuli (Fig. 4B) that was well
described by a power law F̄α with α ¼ 0.26� 0.08 (mean� SD,
n ¼ 11). This level function resembled that of the primaries
(α ¼ 0.41� 0.07, n ¼ 11) or of the response to a pure tone
(α ¼ 0.38� 0.07, n ¼ 43). Correspondingly, the level of the cu-
bic difference products relative to that of the primaries showed
little variation over the range of stimulus amplitudes that we ex-
plored, remaining approximately constant at 10–20% (Fig. 4C).

These properties are in stark contrast with those elicited by off-
resonance stimuli (f 1 and f 2 near 10 × fC), which probe passive
hair-bundle mechanics (34). In this case, the stimulus elicited
distortion products that were uniformly distributed across the
spectrum (Fig. 3 C and D). In particular, harmonic distortions
were clearly visible as well as even distortion products at
f 1 þ f 2 �mΔf (m < 3). The quadratic summation product f 1 þ
f 2 often emerged first (Fig. 3C). The cubic difference products
at 2f 1 − f 2 and 2f 2 − f 1 surfaced from the noise floor for rela-
tively intense stimuli (F̄ ≥ 3 pN). These cubic products grew
more rapidly than the quadratic summation product, resulting
in a relative level that increased (Fig. 4A). For F̄ ≥ 7 pN, the
relative levels of distortion at and off-resonance were similar,
suggesting that two-tone distortions no longer depended on
the frequency of stimulation. The cubic products showed a steep
increase with the stimulus amplitude that followed a power law
F̄α (α ¼ 2.74� 0.34, n ¼ 11), until saturation afforded no
further increase of distortion magnitude (Fig. 4 B and C). At any
given stimulation level, these products were fainter than those
observed at resonance, with a difference that was more pro-
nounced for smaller stimuli. Notably, in four of the 11 cells that
we analyzed, the level function was nonmonotonic and displayed
a notch.

We then measured how distortion products depended on the
frequency separation between the two components of the stimu-
lus. When a test tone was applied at resonance, the addition of
a second tone with the same amplitude produced cubic difference
products with a magnitude that displayed a maximum when
the frequency mismatch approached zero (Fig. 5A). The bell-
shaped behavior mirrored that observed for two-tone suppression
(Fig. 2, black disks), indicating a reciprocal relation between the
two nonlinear phenomena. In a second set of experiments, we
kept f̄ ¼ ðf 1 þ f 2Þ∕2 constant. For stimulation about resonance
(f̄ ≅ fC), the magnitude of the cubic difference products de-
creased by 50% when f 2∕f 1 was raised from 1.05 to 6 (Fig. 5B).
In addition, higher-order odd products near the primaries be-
came much less prominent: The parameter λ, which characterizes

A

B D

C

Fig. 3. Two-tone distortions. Hair-bundle response to the sum FðtÞ ¼ F̄ · ½sinð2πf1tÞ þ sinð2πf2tÞ� of two sinusoidal forces with equal amplitudes F̄ (2 pN, A and
C; 10.1 pN, B and D). Two-tone stimulation was delivered at resonance (A and B), with f1 ¼ 20 Hz and f2 ¼ 22 Hz near the bundle’s characteristic frequency of
spontaneous oscillations fC ¼ 20 Hz, or off-resonance (C and D; f1 ¼ 200 Hz and f2 ¼ 220 Hz). The hair-bundle motion displayed a periodic beating pattern of
magnitude; the ensemble average of 40 (A and B) or 400 (C and D) beats is plotted here (black line). The spectral density of bundle movement is shown on the
side of each temporal trace for 20 s of recording. The frequencies of the distortion products are labeled in red. Keeping only the Fourier components f1 and f2
of the primaries resulted in a beating pattern of motion with an envelope (blue line) that is superimposed on the bundle’s global response. Conversely, filtering
the primaries disclosed, in the temporal domain, the waveform of distortion (red line) that the hair bundle introduced into its response to the stimulus.
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the exponential decay rate of the relation between a product’s
magnitudeXk and its order k, increased from 0.4 to 1.2 (Fig. 5C).
Correspondingly, the relative magnitude Xkþ1∕Xk decreased
from 67% to 30%. Off-resonance (f̄ ≅ 10 × fC), the cubic differ-
ence products as well as higher-order products were instead in-
sensitive to variations of the frequency separation between the
two components of the stimulus (Fig. 5 B and C).

The endolymphatic Ca2þ concentration acts as a control para-
meter of active hair-bundle motility (33, 35, 36). Because raising
this concentration in the millimolar range brings spontaneous
oscillations to a halt, we could compare, with the same hair bun-
dle, two-tone distortions in oscillatory and quiescent regimes of
hair-bundle mechanics (Fig. 6). In agreement with a previous
study (7), we found that a quiescent hair bundle still produced
distortion products. However, the cubic difference products were
much weaker than in the oscillatory regime and the spectrum
of distortion was in this case dominated by quadratic products
(Fig. 6 A and B). In addition, the level function of cubic products
had lost frequency specificity and displayed a superlinear growth
(Fig. 6C). This behavior was similar to that observed off-reso-
nance with oscillatory hair bundles.

Discussion
Static and Passive Nonlinearity from Gating Compliance. What is the
mechanical nonlinearity that underlies the production of two-

tone interferences? The nonlinear compliance that ensues from
direct gating of the transduction channels by tip-link tension is
a well-recognized source of mechanical distortion by the hair
bundle (7). Gating compliance is clearly sufficient to explain two-
tone suppression and distortions under ionic conditions for which
the hair bundle does not oscillate, or for off-resonance stimula-
tion of an oscillatory hair bundle (see section 2 in SI Text and
Figs. S1 and S2). In particular, this nonlinearity produces distor-
tion products at 2f 1 − f 2 and 2f 2 − f 1 that grow superlinearly,
until saturation of mechano-electrical transduction affords no
further increase of their magnitude. Simulations also indicate
that when gating compliance is strong enough to elicit negative
stiffness, a condition associated with the production of sponta-
neous hair-bundle oscillations (37), the level function of these
cubic products displays a pronounced notch. Interestingly, in
the example shown in Fig. 6C, the notch that was apparent for
stimulation off resonance in the regime of spontaneous oscilla-
tion was lost in the quiescent regime, suggesting that the property
of negative stiffness had vanished at higher Ca2þ concentrations.

Near the characteristic frequency of spontaneous hair-bundle
oscillations, two-tone interferences acquire three main features
that, together, are inconsistent with static nonlinearities such as
that provided by gating compliance. First, the cubic difference
products, as well as the other odd distortion products near the
primaries, appear at lower levels of stimulation and become

A B C

Fig. 4. Level function of cubic difference products. (A) The level of the cubic-difference products at 2f1 − f2 and 2f2 − f1, for which we computed the ar-
ithmetic mean, is here compared to that of the quadratic-summation product f1 þ f2. The ratio of these two quantities is plotted as a function of the mag-
nitude F̄ of the external force for stimulation at resonance (black) and off-resonance (red). (B) Arithmetic-mean level of the two cubic difference products
2f1 − f2 and 2f2 − f1 (filled circles) and of the two primaries f1 and f2 (open circles) at resonance (black) and off-resonance (red) as a function of the stimulus
amplitude F̄. Dashed horizontal lines mark noise-floor levels when distortion products first appeared. Data in A and B from the same dataset as that used to
plot Fig. 3. (C) For n ¼ 11 cells with f2∕f1 ¼ 1.08 − 1.15, the arithmetic-mean level of the two cubic difference products was divided by that of the primaries at
resonance (black) and off-resonance (red). This relative level is plotted as a function of the stimulus amplitude F̄. The continuous lines correspond to a moving
average over a window comprising seven data points. The shaded areas represent 95% confidence intervals.

A B C

Fig. 5. Frequency specificity of odd distortion products near the primaries. (A) Arithmetic-mean level of the two cubic difference products 2f1 − f2 and 2f2 − f1
as a function of the frequency separation Δf ¼ f2 − f1. Same cell and stimulus series as in Fig. 2. (B) Level of the cubic difference products as a function of the
frequency ratio f2∕f1. We varied f1 and f2 in a way that kept f̄ ¼ ðf1 þ f2Þ∕2 constant and stimulated the hair bundle about resonance (black; f̄ ¼ 25 Hz ≅ fC ),
or off-resonance (red; f̄ ¼ 250 Hz). (C) In this semilogarithmic plot, the parameter λ that characterizes the exponential hierarchy of distortion products is
represented as a function of the relative frequency separation Δf∕f̄ , where Δf ¼ f2 − f1. The continuous lines result from moving averages over a window
of five data points obtained from five hair bundles; 95% confidence intervals are shown as shaded areas. Black and red plots are for stimulation about re-
sonance (f̄ ≅ fC ) and off-resonance (f̄ ≅ 10 × fC ), respectively. In B and C, the stimulus amplitude was F̄ ¼ 10 pN.
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prominent in the spectral density of hair-bundle movements
(Figs. 3 and 4). Second, both cubic difference products and pri-
maries show a compressive growth over a large range of stimulus
magnitudes, yielding a relative level that is nearly constant
(Fig. 4). Finally, the level of these cubic products (Figs. 4 and 5),
the exponential hierarchy of odd distortion products near the
primaries (Fig. 5C), as well as the phenomenon of two-tone sup-
pression (Figs. 1 and 2) display pronounced frequency specificity.

Dynamic and Active Nonlinearity from Critical Oscillation.Clearly, the
oscillatory activity of the hair bundle harnesses the intrinsic
nonlinearity associated with mechano-electrical transduction to
produce a dynamic nonlinearity with new properties. This makes
sense because active hair-bundle motility introduces an extended
compressive nonlinearity of responsiveness for frequency compo-
nents of the stimulus that fall near the characteristic frequency of
oscillation (20) (Fig. 1 A and B, black disks). This behavior is
characteristic of “critical” oscillators, which are active dynamical
systems that operate in the vicinity of a Hopf bifurcation (38–41).
A Hopf bifurcation corresponds to an oscillatory instability by
which the system changes abruptly from quiescence to a regime
of spontaneous oscillations as a control parameter is varied
continuously (42). At the characteristic frequency of the instabil-
ity, an energy-transducing mechanism cancels the impedance of
the system to sinusoidal stimuli. The system’s response is in turn
amplified and under the control of an essential nonlinearity,
for which there is no stimulus weak enough to evoke a linear re-
sponse. Evidently, an active system of this sort should produce
conspicuous two-tone interferences for stimulation near the char-
acteristic frequency of the oscillator (43, 44). Simulations (Fig. 7)
that are based on a generic description of a critical oscillator
(Eq. 1; see Methods) demonstrate that these interferences are
in qualitative agreement with those elicited by an oscillatory hair
bundle (Fig. 1, 2, 4 and 5). In particular, the frequency specificity
of two-tone suppression and distortions as well as the parallel
compressive growth of the cubic difference products and of the
primaries for stimulation at resonance emerge as properties that

should be shared by all dynamical systems that operate near a
Hopf bifurcation.

The theoretical framework provided by the generic behavior of
a critical oscillator explains why the cubic difference tones dom-
inate the spectrum of distortion products. If both components of
a two-tone stimulus approximate the characteristic frequency of
the oscillator, a condition that requires a small frequency separa-
tion, so will the cubic difference tones. Because they enter the
active bandwidth of the oscillator, these distortion products are
amplified and in turn contribute significantly to the hair-bundle
motion. Moreover, the amplified response to a test tone by the
active oscillator is readily extinguished by adding a masker tone at
a nearby frequency, because the masker tone increases the impe-
dance to the test tone by effectively detuning the oscillator away
from the bifurcation point (44).

Some features of the experimental recordings, however, are
not reproduced by the simulations of a critical oscillator. These
include the notch that was observed in the level function of
distortion products at 2f 1 − f 2 and 2f 2 − f 1 for stimulation off-
resonance (Fig. 6C), as well as the saturation that was measured
in response to intense stimuli both for the suppression of the
response to a test tone by a masker tone (Fig. 1A) and in the level

A

B

C

Fig. 6. Effects of Ca2þ on cubic difference products. This hair bundle was
subjected to the sum of two sinusoidal forces with equal amplitudes F̄.
(A) At an endolymphatic Ca2þ concentration of 250 μM, the hair bundle dis-
played spontaneous oscillations at a characteristic frequency fC ¼ 19 Hz.
The spectral density of hair-bundle movement is plotted for stimulation at
resonance (f1 ¼ 18 Hz and f2 ¼ 19 Hz) with a stimulus amplitude F̄ ¼ 5.2 pN.
(B) When the Ca2þ concentration was raised to a value of 1 mM, the hair
bundle became quiescent. The spectral density of motion resulted from
the same stimulus as in A. (C) The arithmetic-mean level of the two cubic
difference products is plotted as a function of the stimulus amplitude F̄ for
f1 ¼ 18 Hz and f2 ¼ 19 Hz (black) and f1 ¼ 180 Hz and f2 ¼ 190 Hz (red).
Close and open symbols correspond to oscillatory and quiescent conditions,
respectively. Note the notch in the level function depicted by red disks. Data
in A–C from the same cell.

A B

C D

Fig. 7. Simulations of two-tone interferences by a critical oscillator. (A) Two-
tone suppression. The response at the frequency f1 ¼ 20 Hz (black) or f1 ¼
200 Hz (red) of a test tone is plotted as a function of the amplitude F1 of this
component of the two-tone stimulus for various amplitudes F2 (•, 0 pN; △,
1 pN; ⧫, 5 pN;▿, 25 pN) of a masker tone at f2 ¼ 22 Hz (black) or f2 ¼ 220 Hz
(red). The oscillator displayed a characteristic frequency of spontaneous
oscillation fC ¼ 20.9 Hz. (B) Here F1 ¼ F2 ¼ 0.2 pN, the test-tone frequency
f1 ¼ 21 Hz ≅ fC was fixed while the masker-tone frequency f2 was varied.
The responses at frequencies f1 (black disks) and f2 (white disks), as well
as the arithmetic-mean level of the cubic difference products at frequencies
2f1 − f2 and 2f2 − f1 (red disks), are plotted as a function of the frequency
separation Δf ¼ f2 − f1. (C) Two-tone distortions. The arithmetic-mean level
of the cubic difference products is plotted as a function of the stimulus am-
plitude F̄ ¼ F1 ¼ F2 at resonance (black; f1 ¼ 20 Hz and f2 ¼ 22 Hz) and off-
resonance (red; f1 ¼ 200 Hz and f2 ¼ 220 Hz). (D) The arithmetic-mean level
of the two cubic difference products was divided by that of the primaries and
plotted as a function of the stimulus amplitude F̄. The system was determi-
nistic, except in C and D (open symbols) where the oscillator was subjected to
random noise. Thin blue lines represent power laws (power indicated next to
the line). Parameter values: μ ¼ 0, b ¼ 1017 m−2·s−1, Λ ¼ 1 · 10−7 N·s·m−1.
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functions of distortion products (Fig. 4). These two properties can
be interpreted as consequences of negative hair-bundle stiffness
and of the saturation of mechano-electrical transduction, respec-
tively (Figs. S1 and S2). Off-resonance or intense stimuli thus pro-
vide specific information about passive hair-bundle mechanics. In
addition, active oscillations by a single hair bundle are noisy. By
limiting the phase coherence of active force production, intrinsic
fluctuations conceal the bifurcation at which a deterministic
dynamical system might operate and restore a linear regime of
responsiveness to weak stimuli (45, 46). In contrast to a truly
critical oscillator, which can distort arbitrarily small inputs for sti-
mulation at resonance, a noisy system thus evinces nonlinearities
only for stimuli with magnitudes beyond some threshold under
the control of the noise strength (Fig. 7 C and D). If noise is weak
enough, however, the signatures of critical oscillation remain
(46). Notably, when the noise strength matches that expected for
a hair bundle (see Methods), cubic difference products by a cri-
tical oscillator can arise at stimulus magnitudes that accord with
those observed experimentally (Fig. 7 C and D, open disks).

Active and Passive Distortions in Vivo.The unusual properties of the
phantom tones that are heard in the human percept in response
to two-tone stimulation had early been recognized as indirect evi-
dence for the existence of an essential nonlinearity in hearing (3,
8). Yet, the physical origin of this nonlinearity remained elusive.
The compressive and frequency-specific nonlinearity evinced by
an oscillatory hair bundle (Fig. 1 A and B, black disks), or more
generally by any self-sustained oscillator operating near a Hopf
bifurcation (47), is ideally suited to account for the auditory non-
linearity. In response to two-tone stimuli of increasing magni-
tudes, this dynamic nonlinearity produces distorted vibrations
at 2f 1 − f 2 that appear at low levels and grow nearly in parallel
with vibrations at the primary frequencies f 1 and f 2 (Figs. 4 and
7). In agreement with psychoacoustical studies (3), the subjective
intensity of the corresponding phantom tone would thus be ex-
pected to remain practically proportional to that of the stimulus
over the extended range of stimulation for which the oscillator’s
response remains compressive. In addition, because this compres-
sive nonlinearity holds only near the condition of resonance
(f 1 and f 2 near fC), two-tone interferences by the active oscillator
are inherently dependent on the frequency separation between
the primary frequencies.

Signatures of critical oscillators can also be found in vivo on
the basilar membrane of the mammalian cochlea. First, for
two-tone stimuli at nearby frequencies, the cubic difference pro-
duct 2f 1 − f 2 appears at its characteristic place for stimulation
levels as low as 30 dB and displays a compressive growth that par-
allels that observed in response to a pure tone at the same fre-
quency over a 50-dB variation of sound-pressure levels (10).
Assuming that the pure tone response provides a fair estimate for
the level function of the primaries, this behavior conforms to that
shown in Figs. 4 and 7. Second, the cubic-difference product dis-
plays a power-law relation to the stimulus level that is similar to
that anticipated for an active oscillator near a Hopf bifurcation
(Fig. 7). Third, moderate to intense sound stimuli produce an ex-
ponential hierarchy of distortion products, as measured with a
single hair bundle (Fig. 3) and expected for a critical oscillator
(44). Finally, these properties strongly depend on the frequency
separation between the primary frequencies.

Distortion-product oto-acoustic emissions afford another non-
invasive means to assay the properties of the mechanical nonli-
nearity that underlies two-tone distortions in vivo. The spectrum
of DPOAEs in the bobtail lizard shows prominent cubic differ-
ence tones in live animals, whereas passive mechanics instead fa-
vors quadratic products postmortem (16). This change in spectral
content agrees with that reported here for a single oscillatory hair
bundle for stimulation at and off resonance, respectively (Fig. 3),
and in response to an increase in Ca2þ concentration that stops

spontaneous oscillations (Fig. 6). In mammals, furosemide or an-
oxia, which both depress cochlear amplification, evoke a progres-
sive loss of the cubic difference tones at low levels of stimulation
and a transition from a compressive to a superlinear level func-
tion for these distortion products (48). Similarly, prestin knock-
out mice lacking electromotility still display DPOAEs, but the
cubic difference tone at 2f 1 − f 2 appears at higher sound levels
than in wild-type animals and displays a superlinear level function
(49) that is characteristic of passive nonlinear mechanics. The
qualitative resemblance between the two-tone distortions that
are measured in vivo as oto-acoustic emissions in the ear canal
and those evoked in vitro by a single oscillatory hair bundle is re-
markable considering that the former are not evaluated at the site
of production but after propagation through the hearing organ.

Integration of the Hair-Bundle Oscillator in Hearing Organs. We have
demonstrated here that a single oscillatory hair bundle qualita-
tively recapitulates the most salient features of phantom tones
and suppressive masking in the field of psychoacoustics as well
as of two-tone distortions and suppression that characterize ac-
tive inner-ear mechanics. Being observed over a relatively narrow
range of stimulus amplitudes, two-tone interferences from active
oscillations of a single hair bundle are significantly weaker than
those observed in intact organs. Understandably, intrinsic noise
limits the nonlinear amplification that a single hair bundle can
achieve for weak stimuli (45, 46). Mechanical coupling of noisy
hair-bundle oscillators by overlying membranous structures,
however, has been shown to enlarge the compressive nonlinearity
produced by the hair-bundle amplifier (50, 51). An oscillatory
module comprising a few tens of hair cells is predicted to produce
similar amplificatory gains as those measured in vivo in the mam-
malian cochlea and in turn to elicit two-tone suppression and
distortions over a much wider range of stimulus amplitudes than
that reported here with a single hair bundle.

Our results do not pinpoint active hair-bundle motility as
the only player in the active process that both boosts the ear’s
technical specifications as a sound detector and fosters nonlinear
interference in hearing. In the mammalian cochlea, a complex
interplay between active hair-bundle and somatic motility of
outer hair cells with the micromechanical environment may bring
the cochlear partition on the brink of a Hopf bifurcation (32, 47).
Any critical oscillator must show the same generic behavior as
that observed here experimentally with a single oscillatory hair
bundle. In return, we argue that the properties of two-tone inter-
ferences in hearing betray the workings of active mechanical
oscillators that provide nonlinear amplification of sound-evoked
vibrations in the inner ear.

Methods
Experimental Preparation. Details of the experimental procedure have been
published elsewhere (35). An excised preparation of the bullfrog’s (Rana ca-
tesbeiana) saccule was mounted on a two-compartment chamber. The basal
bodies of hair cells were bathed in standard saline containing (in mM): 110
NaCl, 2 KCl, 4 CaCl2, 3 D-glucose, 2 Na2-creatine phosphate, 2 Na-pyruvate
and 5 Na-HEPES. Hair bundles instead projected into an artificial endolymph
of composition (in mM): 2 NaCl, 118 KCl, 0.25 CaCl2, 3 D-glucose and 5
Na-HEPES. To disconnect the hair bundles from the overlying otolithic
membrane, the apical surface of the preparation was exposed for 20 min
to endolymph supplemented with 67 mg·mL−1 of the protease subtilisin
(type XXIV, Sigma). The otolithic membrane was then peeled off to obtain
access to individual hair bundles.

Microscopic Apparatus and Mechanical Stimulation. The preparation was
viewed through a × 60 water-immersion objective of an upright microscope
(BX51WI, Olympus). The tip of a stimulus fiber attached to the hair bundle
was imaged at a magnification of × 1;000 onto a displacement monitor that
included a dual photodiode. For movements that did not exceed �150 nm,
this photometric system reported the fiber motion with no detectable distor-
tion and was thus linear. Calibration was performed by measuring the output
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voltages of the photometric system in response to a series of offset displa-
cements.

Flexible glass fibers were fabricated from borosilicate capillaries and
coated with a thin layer of gold-palladium to enhance contrast. The stiffness
KF and drag coefficient λF of the fibers were, respectively, 0.1–0.15 pN·nm−1

and 40–200 nN·s·m−1, as determined by power spectral analysis of Brownian
motion of the fiber’s tip in water. The fiber was secured by its base to a stack
type piezoelectric actuator (PA-4/12, Piezosystem Jena) driven by a custom-
made power supply (Elbatech). The fiber’s tip was affixed to the kinociliary
bulb of an individual hair bundle. Neglecting viscous components, the force
FHB ¼ KF · ðΔ − XÞ exerted by the stimulus fiber at the bundle’s top was pro-
portional to the deflection of the fiber, in which X and Δ are the positions of
the hair bundle and of the fiber’s base, respectively.

We define here the stimulus as F ¼ KF · Δ ¼ FHB þ KF · X, which corre-
sponds to the force effectively applied to the top of the hair bundle when
this organelle is loaded by a fiber. The mechanical system under study is
therefore composed of the parallel arrangement of the hair bundle with
the elastic fiber; this system is slightly stiffer than the hair bundle alone. Using
flexible fibers ensured that spontaneous hair-bundle oscillations were only
weakly disturbed by the elastic load (33).

To study two-tone interferences, the hair bundle was subjected to the
time-dependent sum FðtÞ ¼ F1 sinð2πf1tÞ þ F2 sinð2πf2tÞ of two sinusoidal
forces at frequencies f1 and f2, with a ratio f2∕f1 ¼ 1.08–1.15, unless expli-
citly stated (Figs. 2 and 5). Here, F1 and F2 are the amplitudes of the two
tones. To make sure that the frequency components of the stimulus, as well
as their linear combinations, were precisely represented by a single data
point in the Fourier domain, we used only stimulus frequencies and recording
durations that were integer numbers of hertz and seconds, respectively. A
typical recording lasted 10–30 s.

Signal Generation, Acquisition. All signals were generated and acquired under
the control of a computer running a user interface programmed with
LabVIEW software (version 8.6; National Instruments). The command signal
controlling the external force F applied to the hair bundle was produced by
a 16-bit interface card at a sampling rate of 2.5 kHz (PCI-6733, National
Instruments). A second interface card (PCI-6250, National Instruments) con-
ducted signal acquisition with a precision of 16 bits and a sampling rate
of 2.5 kHz. Signals coming from the displacement monitor or going to the
stimulation apparatus were conditioned with an eight-pole Bessel antialias-
ing filter adjusted to a low-pass half-power frequency of 1 kHz.

Data Analysis. We defined the characteristic frequency fC of spontaneous
oscillations as the peak frequency of the bundle’s power spectrum of spon-
taneous motion or of the bundle’s frequency-dependent linear response
function to small (1–2 pN) sinusoidal forces (34).

In response to two-tone stimulation, the hair bundle elicited distortion
products at linear combinations nf1 þmf2 of the stimulus frequencies f1
and f2, where n and m are integers. The amplitude Xnf1þmf2 of the bundle’s
motion Fourier component at frequency nf1 þmf2 was calculated as
Xnf1þmf2 ¼ 2 · j ~Xðnf1 þmf2Þj∕Texp, where ~XðfÞ is the Fourier component at
frequency f of the time-varying hair-bundle motion XðtÞ and Texp is the dura-
tion of the recording. The minimal distortion amplitude that could be mea-
sured was limited by the noise-floor level at the frequency of the distortion
product. This noise level was estimated by computing the average power of
bundle motion in a frequency window of 2 · ðf2 − f1Þ centered at the fre-

quency of the distortion product, with a stimulus magnitude just below
the threshold value for which a clear peak of distortion emerged in the
power spectrum. Because the cubic difference products 2f1 − f2 and
2f2 − f1 were not significantly different, we considered only their arith-
metic-mean level ðX2f1−f2 þ X2f2−f1 Þ∕2. The amplitude Xnf1þmf2 of each pro-
duct was averaged over 4–6 realizations of the stimulation procedure.
Error bars in Figs. 2 and 4–6 represent standard errors to the mean value.

At intermediate-to-large stimulus intensities, a hierarchy of odd distortion
products was observed on either side of the primaries at frequencies
f1 − kΔf and f2 þ kΔf , respectively, where k is a positive integer. For each
side, the decrease in distortion amplitude with increasing order k was
described by an exponential decay Xk ¼ X0 · expð−λ · kÞ, where X0 and λ are
fit parameters. In the main text, we consider the arithmetic mean of the two
decay coefficients λ that resulted from this fitting procedure.

Simulations of Two-Tone Interferences by a Critical Oscillator. An active dyna-
mical system undergoes a Hopf bifurcation when its behavior exhibits an
abrupt change from quiescence to spontaneous oscillations upon continuous
variation of a parameter μ describing some component of the system (42).
When this control parameter is poised near the critical value μ ¼ μC where
spontaneous oscillations just emerge, the system is called a critical oscillator.
The generic behavior of a critical oscillator is described by a dynamic equation
of a complex variable Z:

_Z ¼ −ðμþ i2πfCÞZ − bjZj2Zþ FðtÞ
Λ

þ ηðtÞ [1]

where _Z is the time derivative of Z, fC is the characteristic frequency of the
oscillator, b is the magnitude of the cubic nonlinear term that stabilizes the
amplitude of spontaneous oscillations when μ < 0, and i2 ¼ −1. In simula-
tions, we took μC ¼ 0 and b was a real number of positive sign. The real part
of Z represents the hair-bundle displacement XðtÞ, FðtÞ ¼ F1 sinð2πf1tÞþ
F2 sinð2πf2tÞ describes the two-tone stimulus applied to the system, and Λ
is a friction coefficient. In some cases, a complex noise term ηðtÞ ¼ η1ðtÞþ
iη2ðtÞ was added to account for fluctuations. We considered Gaussian
white noise with zero mean hηðtÞi ¼ 0 and with a strength characterized
by correlations hηiðtÞηjðt 0Þi ¼ 2kBTΛδðt − t 0Þδij , where δðtÞ is the Dirac dis-
tribution and δij denotes the Kronecker delta (i ¼ 1, 2). We chose
Λ ¼ 1 · 10−7 N·s·m−1 to accord with measured values of a hair bundle’s fric-
tion coefficient (52). Note that by imposing the value of the parameter Λ, we
also set the magnitude of the noise terms ηiðtÞ. The value b ¼ 1017 m−2·s−1

ensured that the oscillator entered the nonlinear regime of responsiveness to
sinusoidal stimuli at a vibration magnitude that agreed with those measured
experimentally with oscillatory hair bundles, typically 10 nm (20). The two
coupled first-order differential equations describing the time evolution of
the real and imaginary part of Z were integrated by the Euler method.
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SI Text
Section 1: Classic Nonlinear Behavior of a Passive System with a Static
Nonlinearity. Consider a two-tone stimulus F ¼ F̄ sinð2πf 1tÞþ
F̄ sinð2πf 2tÞ in which the two tones have the same amplitude
F̄. The response X of a passive system endowed with a static
nonlinearity—that is, a nonlinearity that does not depend on the
frequency of stimulation—can be expanded as a power series
in the input F (1). If the stimulus is weak enough, only the first
three terms of this expansion are required to describe the general
properties of the quadratic and cubic distortion products:

X ≅ χF þ αF2 þ βF3: [S1]

The coefficient χ describes the linear sensitivity of the system
for vanishingly small stimuli. The coefficients α and β account for
nonlinearities that emerge at higher forcing.

Eq. S1 indicates that the system produces quadratic and cubic
distortion products with magnitudes proportional to F̄2 and F̄3,
respectively. The response also contains components at the fre-
quencies of the primaries. Their magnitudesXf 1 andXf 2 are con-
trolled by the linear term of the expansion and are therefore
proportional to F̄. In addition, one can relate the magnitude
of each distortion product to the intensity F̄ of the stimulus.
In particular, to leading order:

Xf 2�f 1 ∝ F̄2 and X2f 1�f 2 ∝ F̄3; [S2]

in which Xf 2�f 1 and X2f 1�f 2 are the magnitudes of the distortion
products at the respective frequencies f 2 � f 1 and 2f 1 � f 2. Be-
cause the linear coefficient χ of a passive system never vanishes,
distortions become negligible for weak stimuli and the response

reflects the stimulus with high fidelity. Conversely, the higher the
intensity of the stimulus the more prominent the distortions be-
come. For instance, the relative level X2f 1−f 2∕Xf 1 of the cubic
distortion product at frequency 2f 1 − f 2 is expected to increase
as F̄2.

Section 2: Two-Tone Interferences from Nonlinear Gating Compliance.
Within the gating-spring model of mechanoelectrical transduc-
tion (2, 3), passive hair-bundle mechanics is described by the
force-displacement relation FHBðXÞ ¼ K∞X −NZPoðXÞþ
F0. In this relation, PoðXÞ ¼ 1∕ð1þ expð−ZðX −X0Þ∕ðkBTÞÞÞ
represents the open probability at the deflection X of N trans-
duction channels that operate in parallel and assumes a value of
0.5 when X ¼ X0. The force offset F0 ¼ NZPoð0Þ ensures that
FHBð0Þ ¼ 0. For large deflections, the hair bundle behaves as a
Hookean spring of stiffness K∞. As the result of the direct con-
nection between transduction channels and elastic gating springs,
gating-spring tension is reduced by an amount Z upon channel
opening. These gating forces effectively soften the hair bundle
in the region of deflections that elicit significant channel rearran-
gements between open and close states, a process termed gating
compliance. Because the force-displacement relation is non-
linear, the system produces interferences in response to a two-
tone stimulus FðtÞ ¼ F1 sinð2πf 1tÞ þ F2 sinð2πf 2tÞ. To character-
ize their properties, we performed stochastic simulations (Figs. S1
and S2) by solving the first-order differential equation λ _X ¼
F − FHBðXÞ þ η, where λ ¼ 100 nN·s∕m represents the bundle’s
friction coefficient, and η is a noise term of zero mean hηðtÞi ¼ 0
and of autocorrelation hηðtÞηðt 0Þi ¼ 2kBTλδðt − t 0Þ. Here, δðtÞ
is the Dirac distribution, kB is the Boltzmann constant, and T is
the temperature.

1. Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–689.
2. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associatedwith gating of

mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron
1:189–199.

3. Martin P, Mehta AD, Hudspeth AJ (2000) Negative hair-bundle stiffness betrays a me-

chanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA

97:12026–12031.
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Fig. S1. Two-tone interferences from gating compliance in the absence of negative stiffness. (A) Force-displacement relation of the system. The gating com-
pliance is here too weak to elicit negative stiffness. Parameter values: K∞ ¼ 1 pN∕nm, N ¼ 50, Z ¼ 0.52 pN, F0 ¼ 7.6 pN, and X0 ¼ 7.0 nm. (B) Two-tone sup-
pression. The magnitude of the bundle motion’s Fourier component at the frequency f1 ¼ 20 Hz of a sinusoidal stimulus is plotted as a function of the
amplitude F1 of this test tone. The various shades of gray correspond to different amplitudes F2 (black, 0 pN; dark gray, 5 pN; light gray, 25 pN) of the masker
tone that was added to the test tone at a nearby frequency f2 ¼ 22 Hz. (C) Two-tone distortions. In this three-dimensional plot, the arithmetic mean of the
cubic difference products at frequencies 2f1 − f2 and 2f2 − f1 is plotted as a function of the stimulus amplitude F̄ ¼ F1 ¼ F2 at f1 ¼ 20 Hz and f2 ¼ 22 Hz for
varying open probabilities Po at rest. The stimulus lasted 20 s and was repeated 10 times. This level function displays a notch that increases in magnitude when
Po departs from the value of 0.5. However, this notch is concealed by thermal fluctuations within the physiological range of operating points (Po ¼ 0.01–0.99).
(D) For the operating point corresponding to the force-displacement relation shown inA, where Po ¼ 0.29, the level function of the cubic difference products is
monotonic and does not depend on the stimulation frequency (black, f1 ¼ 20 Hz and f2 ¼ 22 Hz; red, f1 ¼ 200 Hz and f2 ¼ 220 Hz).
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Fig. S2. Two-tone interferences from gating compliance in the presence of negative stiffness. (A) Force-displacement relation of the system. Gating com-
pliance is strong enough to elicit negative stiffness. Parameter values: K∞ ¼ 1 pN∕nm, N ¼ 50, Z ¼ 0.9 pN, F0 ¼ 21.9 pN, and X0 ¼ 0.3 nm. (B–D) Same stimuli
and analysis as in Fig. S1 B–D, respectively. For small intensities of stimulation, the response functions shown in B display a characteristic bump. This feature is
also present in the experimental recording shown in Fig. 1B of themain text. Large notches are produced in the level function of cubic difference products, with
amplitudes that do not depend on the resting open probability (C–D). An example is shown in D for an open probability of 0.5.
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