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Hearing starts when sound-evoked mechanical vibrations of the
hair-cell bundle activate mechanosensitive ion channels, giving
birth to an electrical signal. As for any mechanical system, friction
impedes movements of the hair bundle and thus constrains the
sensitivity and frequency selectivity of auditory transduction.
Friction is generally thought to result mainly from viscous drag by
the surrounding fluid. We demonstrate here that the opening and
closing of the transduction channels produce internal frictional
forces that can dominate viscous drag on the micrometer-sized
hair bundle. We characterized friction by analyzing hysteresis in
the force–displacement relation of single hair-cell bundles in re-
sponse to periodic triangular stimuli. For bundle velocities high
enough to outrun adaptation, we found that frictional forces were
maximal within the narrow region of deflections that elicited sig-
nificant channel gating, plummeted upon application of a channel
blocker, and displayed a sublinear growth for increasing bundle
velocity. At low velocity, the slope of the relation between the
frictional force and velocity was nearly fivefold larger than the
hydrodynamic friction coefficient that was measured when the trans-
duction machinery was decoupled from bundle motion by sever-
ing tip links. A theoretical analysis reveals that channel friction
arises from coupling the dynamics of the conformational change
associated with channel gating to tip-link tension. Varying channel
properties affects friction, with faster channels producing smaller
friction. We propose that this intrinsic source of friction may con-
tribute to the process that sets the hair cell’s characteristic fre-
quency of responsiveness.
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Sound evokes vibrations in the inner ear that are detected by
sensory hair cells. Mechanosensitivity stems from mechanical

activation of ion channels by tension changes in tip links that
interconnect neighboring stereocilia of the hair-cell bundle (1).
The acute sensitivity and sharp frequency selectivity of audi-
tory detection rely on efficient transmission of the energy de-
rived from the acoustic stimulus to the apparatus that mediates
mechanoelectrical transduction. However, at least three sources
of friction threaten to dissipate the energy of the vibrating hair
bundle. First, viscous drag by the surrounding fluid provides
a minimum source of damping (2, 3). Second, viscoelasticity of
the tip links, or of proteins in series with these links, may result in
additional dissipation during hair-bundle deflections (4). Third,
an intrinsic source of friction—called “channel friction” in the
following—is related to thermal fluctuations of the transduction
channels between their open and closed states (5). The fluctua-
tion–dissipation theorem dictates that this source of mechanical
noise be related to friction forces on the hair bundle.
To circumvent the fundamental challenge posed by friction,

hair cells mobilize internal energy resources to produce me-
chanical work, negate friction, and in turn amplify its inputs at
a characteristic frequency (6, 7). In particular, the hair cell can
power active movements of its hair bundle, including spontane-
ous oscillations (8, 9). Nevertheless, the performance of the hair

bundle, both as transducer and amplifier, are influenced by
friction for two reasons. First, friction limits the sensitivity of the
hair bundle to weak inputs (5, 10). Second, the strength and
dynamics of active force production must be tuned to balance
friction that impedes movements of a particular bundle at its
characteristic frequency (11). Despite their key role in hair-cell
mechanosensitivity, the various sources of friction acting on a
moving hair bundle, and how they depend on bundle velocity,
have not been assayed directly through force measurements.
In this work, we combine a dynamic force assay with phar-

macological tools to decipher the relative contributions of
viscous drag, tip-link viscoelasticity, and channel friction to hair-
bundle friction. By using a channel blocker to test the implication
of transduction channels’ gating, we unveil the contribution of
channel friction. By disrupting the tip links, we decouple the
transduction apparatus from bundle motion and measure viscous
drag on the hair-bundle structure. We find that channel friction
can dominate viscous drag. We also vary bundle velocity both to
study the dynamical properties of friction and to determine how
active hair-bundle motility affects friction estimates. We in-
terpret our observations by developing a physical description of
active hair-bundle mechanics and explain the mechanism of
channel friction.

Results
To probe friction, we used flexible glass fibers to apply periodic
stimuli to single hair-cell bundles from an excised preparation of
the bullfrog’s saccule (Fig. 1; Materials and Methods). Under
natural ionic conditions, the hair bundles displayed spontaneous
oscillations at frequencies of 5–80 Hz (12). We monitored the
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time-dependent position XðtÞ of the fiber’s tip, and thus of the
attached hair bundle, in response to a symmetric triangular
waveform of motion of the fiber’s base. By convention, a move-
ment of the hair bundle from negative to positive deflections
increased tip-link tension and thus promoted channel opening.
This positive half-cycle of stimulation was followed by a move-
ment of opposite directionality that favored channel closure and
completed the cycle. Because we fully characterized the me-
chanical and dynamical properties of the stimulus fiber (SI Ap-
pendix, section 2), we could compute, at each instant t, the force
FðtÞ that was applied by the fiber to the bundle. At each bundle
position, the force exerted during the positive half-cycle of
stimulation differed from that measured on the way back, caus-
ing hysteresis in the force–displacement relation (Fig. 2A).
Clockwise circulation around the hysteretic cycle reflects en-

ergy dissipation. We characterized the underlying frictional force
by measuring the half-height of the hysteretic cycle

ΦðXÞ= ½F+ðXÞ−F−ðXÞ�=2 [1]

as a function of position. Here and in the following, signs in the
superscripts indicate the directionality of bundle motion. For
a passive system, the force Φ represents the arithmetic mean of
the absolute frictional force on the positive and negative half-
cycles at the same position X (SI Appendix, section 3). We note
that active force production by the hair bundle can affect the
width of the hysteretic cycle and thus contribute to Φ. The con-
tribution of the active process, however, ought to become negli-
gible when the period of stimulation gets significantly shorter
than that of spontaneous hair-bundle oscillation. Interestingly,
the force F+ðXÞ and F−ðXÞ displayed inversion symmetry with
respect to a specific reference point at position X0 ≅ 0 (SI Ap-
pendix, Fig. S1). As a result, for stimuli faster than the internal
active process, the force ΦðX =X0Þ represents the true frictional
force at this position.
The friction estimate Φ depended on bundle position (Fig. 2B,

black curve). The relation ΦðXÞ was bell-shaped, with a peak
centered near the position of inversion symmetry of the hyster-
etic cycle. Bundle velocity also varied with bundle position (Fig.
1B and SI Appendix, Fig. S2). On each half-cycle, this property
was associated with a nonlinear region of reduced slope in the
force–displacement relation, indicating that the hair bundle be-
came transiently softer as it traversed this region (Fig. 2 A and

C). Correspondingly, the bundle moved at increased velocity at
these positions. However, a peak prevailed (Fig. 2D) when the
frictional force was divided, at each position, by the average local
velocity of the hair bundle (SI Appendix, Fig. S2). Hence, hair-
bundle friction cannot be explained by viscous drag on a rigid
object moving through the fluid.
Notably, friction peaked within the range of positions that

spanned the regions of reduced slope of the force–displacement
cycle. We recognized in hair-bundle softening the phenomenon
of gating compliance (13), which here betrayed opening or
closing of the mechanosensory channels that mediate mecha-
noelectrical transduction. In addition, the friction peak was as-
sociated with a shift—hereafter called the gating shift—between
the positions of maximal gating compliance (Fig. 2 A and C): the
channels opened at a position of the hair bundle that was
more positive on the positive half-cycle than that at which they
reclosed on the way back. These observations suggest that
gating of the transduction channels was involved in the pro-
duction of frictional forces.
To test this hypothesis, we used iontophoresis to apply gen-

tamicin, an aminoglycoside antibiotic that blocks the transduction
channels. As expected from complete blockage of the channels,
there was no sign of gating compliance in the force–displacement
relation (Fig. 2 A and C, red curve). Strikingly, the friction peak
collapsed upon application of the drug (Fig. 2 B and D). The
hysteretic cycle exhibited a nearly uniform width close to that
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Fig. 1. Periodic triangular stimulation of a hair bundle. (A) Schematic top
view of the experiment. The tip of a flexible fiber (black) is attached to the
top of a hair bundle (blue). (B) Hair-bundle deflection X as a function of time
(Top) in response to three cycles of a symmetric triangular movement Δ of the
fiber’s base (Bottom). Each positive or negative ramp of base motion had here
a velocity of 34 μm·s−1; the bundle was subjected to a total of 71 cycles. The
fiber had a stiffness k = 295 μN·m−1 and a drag coefficient λ = 113.4 nN·s·m−1.
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Fig. 2. Effects of a channel blocker on friction and stiffness. Black and red
colors correspond, respectively, to measurements under control conditions
and in the presence of a channel blocker. (A) External force F as a function of
bundle position X. Arrows indicate clockwise circulation around a hysteretic
cycle. The positions of minimal slope on the positive and negative half-cycles
(black and white disk, respectively) are shifted by ΔX = +26 nm. (B) Vertical
half-height Φ of the hysteretic cycles shown in A as a function of bundle
position X. (C) Hair-bundle stiffness, measured as the local slope of the
curves shown in A, as a function of bundle position X for positive (dark
colors) and negative (light colors) half-cycles of stimulation. (D) At each
position X, the force Φ shown in B was divided by the arithmetic mean
V = ½jV+ðXÞj+ jV−ðXÞj�=2 of the absolute velocities that the hair bundle as-
sumed on the positive and negative half-cycles when crossing this position.
The ratio Φ=V is plotted as a function of X. The velocity of the fiber’s base
was fixed at 200 μm·s−1; the hair bundle moved at a velocity V =68 μm·s−1.
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measured at large deflections under control conditions. We
conclude that gating of the transduction channels evokes fric-
tional forces on the hair bundle.
We then varied the velocity of stimulation. At low velocity of

the fiber’s base, we observed a counterclockwise circulation
around the force–displacement cycle (SI Appendix, Fig. S3). This
behavior reflects the work performed by an active process to
power spontaneous oscillations of the hair bundle (14). In-
creasing the velocity switched the polarity of the hysteresis cycle,
resulting in net positive dissipation (Fig. 3). We observed a di-
lation of the cycle along the force axis, with a more pronounced
effect within the regions of gating compliance (Fig. 3A). Corre-
spondingly, we measured negative frictional forces at low ve-
locity, and a positive peak of friction emerged in response to
increasing stimulus velocity (Fig. 3B).
If hydrodynamic drag were the dominant source of dissipation,

we would expect friction to grow in proportion to velocity. A
proportional growth was observed when the transduction ma-
chinery was decoupled from bundle motion by severing the tip
links (Fig. 3C and SI Appendix, Fig. S4). Under this condition,
the slope of the force–velocity relation provided a friction co-
efficient λH = 86± 29 nN·s·m−1 (mean ± SD; n = 10). This value
agrees with an estimate of the hydrodynamic drag coefficient
of the hair bundle that resulted from finite-element simulations
of the detailed interaction between the stereovillar structure and
the fluid (2). Thus, friction on a bundle with severed tip links
appears to be set by viscous drag.
With a fully functional transduction machinery, friction at the

peak of the relation ΦðXÞ (Fig. 3B) displayed a sublinear growth
with velocity (Fig. 3C). This behavior contrasts with the linear
increase expected for hydrodynamic friction. At velocities larger
than ∼20 μm·s−1, friction on the intact bundle was larger than
that measured with broken tip links. The hair bundle thus

appeared to be subjected to an intrinsic source of friction that
adds to viscous drag. We then estimated friction within the
shoulders of the friction peak (Fig. 3 B and C). After a steep
rise at low velocities, friction matched that observed when the
channels were blocked. This congruence makes sense because
the stimulus ought to elicit no significant channel gating at the
edges of the hysteretic cycle, where the channels are expected to
be either mostly closed or open. As velocity increased, the two
force–velocity relations approached the linear relation that was
measured with severed tip links. However, friction was larger
with channels blocked than with severed tip links, indicating that
viscous drag was supplemented by additional friction even in the
case where the channels were unable to gate.
Finally, we observed that the gating shift increased with bundle

velocity (Fig. 3 A and D). This property reveals that the larger
the velocity of motion, the further that bundle had to move in
each direction before the transduction channels would actually
gate. For velocities larger than ∼30 μm·s−1, the gating shift in-
creased approximately in proportion to velocity. The slope of this
relation provides twice the time of channel gating, which, at
these velocities, is τexp = 230± 40 μs (mean ± SD; n = 5). This
value lies within the range of the activation time constants of the
transduction currents that were measured with the same type of
hair cells (15). We reasoned that when the bundle moves, extra
elastic energy is stored in the gating springs during the typical
time τexp before the channels gate. Upon channel gating, this
extra energy should be dissipated, giving rise to friction (16). In
turn, we hypothesized that the friction peak that we observed in
our recordings (Fig. 3B) may constitute the mechanical signature
of delayed channel gating.
To test this inference, we introduced finite activation kinetics

of the transduction channels into a physical description of active
hair-bundle mechanics (17). First ignoring viscous drag and the
active process, we studied the consequences of delayed gating for
a passive bundle (SI Appendix, section 4). In response to tri-
angular stimulation, the force–displacement relation shows hys-
teresis (Fig. 4A). Although no explicit source of dissipation was
included in the description, we find that the system is subjected
to frictional forces. Thus, delayed channel gating produces fric-
tion. As in our experiments (Fig. 2B), the mean frictional force Φ
depends on position and displays a maximum (Fig. 4B). The
theory indicates that this force is maximal at the position where
the channels are half-open at steady state. When estimated at the
peak, channel friction displays a sublinear growth as a function of
velocity until it saturates to Φmax =NZ=2 at large velocities. Here
N is the number of transduction channels operating in parallel
within a hair bundle, and Z—the gating force (13)—represents
the reduction in tip-link tension upon the conformational change
associated with channel opening. At low velocities, the frictional
force varies in proportion to velocity with a friction coefficient

λC =NZ2τ
�ð4kBTÞ: [2]

Its value depends on the characteristic timescale τ of channel
activation. Channel friction vanishes with instantaneous channel
gating ðτ→ 0Þ. In addition, channel-gating kinetics introduces
a shift between the positions of channel opening and closing
within the stimulation cycle. Simulations indicate that τ can be
obtained from half the initial slope of the relation between the
gating shift and velocity (Fig. 4F). With parameters listed in
SI Appendix, Table S1, we find λC = 1 μN·s·m−1 ≅ 10 × λH. These
values indicate that friction owing to gating of the transduction
channels can indeed be strong enough to dominate viscous drag
on the hair-bundle structure.
Because the hair bundle displays active motility (SI Appendix,

Fig. S3), the force Φ is expected to depart from the passive friction
estimate discussed in the preceding paragraph. To determine
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X = 3.5 nm (black disks) or at X = −52 nm (red circles), noted ΦX, is plotted as
a function of the mean bundle velocity at this position, VX . Friction was also
estimated in the presence of a channel blocker (red disks; same cell) and
after severing the tip links (cyan solid line: mean behavior of 10 other cells;
edges of the shaded region: SDs to the mean slope). The dashed line (same
slope as the cyan solid line) serves as a guideline for the asymptotic behavior
expected for the relation ΦXðVX Þ under control conditions (Fig. 4E). (D)
Gating shift ΔX as a function of velocity VX at the peak of ΦðXÞ for five
different cells, including that used in A–C (black disks).

Bormuth et al. PNAS | May 20, 2014 | vol. 111 | no. 20 | 7187

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402556111/-/DCSupplemental/pnas.1402556111.sapp.pdf


how active hair-bundle motility affects Φ, we included calcium-
dependent adaptation of the transduction apparatus (17) to our
description (SI Appendix, section 5). At the edges of the stimu-
lation cycle, where the channels are nearly all open or closed and
thus do not add extra friction, or equivalently when the channels
are blocked, adaptation produces in our simulations a positive
contribution to the force Φ that leads to an overestimate of
frictional forces (Fig. 4 C–E). This behavior may explain why the
measured friction was larger with channels blocked than when
the tip links were severed (Fig. 3C), although the tip links may by
themselves be viscoelastic (4) or engage dissipative relative
movements of adjacent stereocilia (18). In contrast, in the region
of channel gating, the theory shows that frictional forces are
underestimated at low bundle velocities, for the active process
provides a negative contribution to Φ (Fig. 4 C and E). The ef-
fect of the active process can be neglected when the stimulus
becomes fast enough to outrun adaptation but is significant at
low velocities, where Φ can become negative (Fig. 4E). In the
case where adaptation is functional (black solid line in Fig. 4E),
we can construct a line of positive slope that starts from the origin
and touches the force–velocity relation in one point. Its slope λ0
provides a lower bound to the drag coefficient λH + λC resulting

from viscous drag and channel friction. In experiments
(Fig. 3C), we measured a value λ0 = 425± 70 nN·s·m−1 (mean ± SD;
n = 6), which was nearly fivefold the hydrodynamic drag co-
efficient λH . In addition, at velocities larger than 40 μm·s−1,
where the active process can be neglected, the slope of the re-
lation between the gating shift and velocity (Figs. 3D and 4F)
accounts for our measurement of the channel time τexp ≅ 230 μs
(Fig. 4F, Inset).

Discussion
Physical Origin of Channel Friction. Our results demonstrate that
gating of the transduction channels provides a major contribu-
tion to hair-bundle friction. It is striking that a few tens of ion
channels (19, 20) can have a significant effect on friction of
a structure as large as the micrometer-sized hair-cell bundle. If
channel friction resulted simply from viscous drag associated
with conformational changes of the channels moving in a fluid,
we would estimate a friction coefficient ξH that is nearly four
orders of magnitude lower than the value λC ≅ 340 nN·s·m−1

measured here at low bundle velocity (SI Appendix, section 4).
Our physical description of hair-bundle mechanics attributes

high channel friction to an intrinsic source of dissipation asso-
ciated with channel gating (Fig. 4 and SI Appendix, section 4). In
a simplified view, this can be explained by introducing an energy
barrier Ea between two conformations of a channel. The effec-
tive friction coefficient associated to channel gating can then be
approximated by ξ× exp½Ea=ðkBTÞ�, where ξ represents a micro-
scopic friction coefficient acting on the channels’ gates (21). If
we take for ξ the rough hydrodynamic estimate ξH given above,
an energy barrier Ea ≅ 10 kBT (15) brings channel friction to a
level compatible with our experiments. Internal friction resulting
from barrier crossing is thought to influence many processes
in biology, including protein folding (22), protein–protein inter-
actions (23, 24), cell adhesion (25), and the speed and efficiency
of motor proteins (16, 26). Our work shows that this general
concept of barrier friction also applies to mechanosensory ion
channels and is thus relevant for the detection of sound-evoked
vibrations by hair-cell bundles in the ear.
In the hair bundle, mechanosensitivity relies on strong cou-

pling between the gating dynamics of the transduction channels
and tip-link tension. If a change in tip-link tension affects the
open probability of a transduction channel, then, reciprocally,
channel gating must impinge on tip-link tension and thus pro-
duce force on the hair bundle (13, 27). However, it takes time to
break the bonds that maintain an ion channel in a closed state.
Channel-gating forces in turn lag the stimulus, which results in
frictional resistance to hair-bundle movements and mechanical
hysteresis. The effect of channel friction on the hair bundle is
thus intimately related to the function of this organelle as a
mechanoreceptor (SI Appendix, section 4).

Dual Role of Channel-Gating Forces. Sensitive mechanotransduction
by hair cells calls for minimal frictional resistance to hair-bundle
vibrations. However, our findings suggest that the hair bundle is
not optimized to keep friction at the minimum level set by vis-
cous drag on the hair-bundle structure. Weaker gating forces
would reduce channel friction (Eq. 2 and SI Appendix, section 4).
However, decreasing the magnitude of the gating force also
broadens the sigmoidal relation between the channels’ open
probability and bundle displacement at thermal equilibrium
(SI Appendix, section 4, Eq. S42) (28). Larger bundle displace-
ments would in turn be required to elicit significant transduction
currents, corresponding to lower mechanosensitivity of the trans-
ducer. Moreover, large gating forces also promote negative
stiffness of the hair bundle, a property that has been shown to be
instrumental in an active process that counteracts friction and
in turn amplifies weak stimuli (29–31). Thus, gating forces may
underlie both a prominent source of hair-bundle friction and
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locity V increases from 10 μm·s−1 (dark blue) to 100 μm·s−1 (red) in nine
10-μm·s−1 steps. (A) Force–displacement cycles F(X) for a passive bundle
(no adaptation). Arrows indicate clockwise circulation. With instantaneous
channel gating, hysteresis vanishes (dashed line). (B) Channel-friction force Φ
as a function of position X for the hysteretic cycles shown in A. (C) Relation
Φ(X) with functional transduction channels and adaptation. (D) Relation
Φ(X) resulting from adaptation when the channels are blocked. (E) Force Φ
at X = 0, noted ΦX, as a function of bundle velocity Vwhen dissipation comes
from viscous drag only (cyan solid), from channel friction and viscous drag
(black dotted), from channel friction, viscous drag and adaptation (black
solid), and from viscous drag and adaptation when the channels are blocked
(red). At larges velocities, the relation ΦX(V) (black solid and dotted) shows
an asymptotic linear behavior (dashed cyan). (F) Gating shift ΔX, and esti-
mate ΔX=ð2VÞ of the channel activation time (Inset), as a function of bundle
velocity V with or without adaptation (solid and dotted lines, respectively).
Parameters in SI Appendix, Table S1.
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part of the solution to the general problem posed by friction
to bundle mechanosensitivity.

Effect of Channel Friction on Characteristic Frequency. Frequency
selectivity is a hallmark of active mechanosensation by hair cells.
Several mechanisms have been implicated in the process that sets
the characteristic frequency of optimal responsiveness, including
electrical tuning of receptor potentials and passive mechanical
resonance in a spring-mass system associated to accessory struc-
tures (32). Notably, spontaneous hair-bundle oscillations also
provide a characteristic frequency near which the cell resonates
with sinusoidal inputs, thus operating as an active filter (33). The
active mechanical resonance occurs near the frequency of the
periodic stimulus where active hair-bundle motility cancels fric-
tion (30, 34), which in our experiments happens at ∼10 Hz
(Fig. 3C). This characteristic frequency is more than a hundred-
fold smaller than the inverse of the channel activation time
(>1 kHz). Consequently, the hair bundle operates in the low-
frequency regime of channel friction, where this source of fric-
tion dominates viscous drag (Fig. 4 and SI Appendix, Fig. S10 in
section 4). The characteristic frequency of the active resonator
is expected to decrease with the frictional load (35, 36). The
characteristic frequency should thus depend on the number of
the transduction channels, the value of their gating force, and of
their activation time (Eq. 2). In particular, faster channels ought
to produce smaller channel friction, which would then allow faster
hair-bundle movements. This property may be relevant to audi-
tory organs where the activation kinetics of the transduction
channels (37, 38), as well as the number and height of the ster-
eocilia (39, 40), has been shown to vary systematically along
a tonotopic axis. Varying channel properties, and in turn channel
friction, could in principle help the hair cells set their characteristic
frequency of maximal mechanical responsiveness over the broad
range required for the analysis of complex natural sounds.
Auditory hair cells, in particular in the mammalian cochlea,

are endowed with much faster channels than those of the low-
frequency hair cells that we studied here in the bullfrog’s sac-
culus. For instance, outer hair cells within the apical turn of the
rat cochlea display activation channel times τrat ≤ 50 μs (37, 41).
Although these cells respond to relatively high frequencies of
∼4 kHz, their characteristic frequency remains significantly smaller
than the inverse of the channel time (>20 kHz). Auditory hair cells
can thus operate in the low-frequency regime of channel friction.
One may wonder whether channel friction is large enough to be
relevant at auditory frequencies, for the magnitude of channel
friction is expected to decrease with faster channels (Eq. 2).
However, the number of channels that contribute to channel
friction is larger for high-frequency than for low-frequency cells.
In addition, the bundle height is smaller at high frequencies, which
magnifies the effect of channel-gating forces (SI Appendix, section
4.3). Using scaling arguments, we estimate frictional forces from
channel gating that may again be larger than those resulting from
viscous drag (SI Appendix, section 4.3). Although experiments are
needed to test this prediction, our results raise the possibility that
channel friction may contribute to the complex process that sets
the characteristic frequency of an auditory hair cell.

Materials and Methods
Experimental Preparation. Details of the experimental procedure have been
published elsewhere (17). Briefly, an excised preparation of the bullfrog’s
(Rana catesbeiana) saccule was mounted on a two-compartment chamber.
The basal bodies of hair cells were bathed in standard saline containing
(in mM): 110 NaCl, 2 KCl, 4 CaCl2, 3 D-glucose, 2 Na2-creatine phosphate,
2 Na-pyruvate, and 5 Na-Hepes. Hair bundles instead projected into an ar-
tificial endolymph of composition (in mM): 2 NaCl, 118 KCl, 0.25 CaCl2, 3
D-glucose, and 5 Na-Hepes. To disconnect the hair bundles from the over-
lying otolithic membrane, the apical surface of the preparation was exposed
for 20–30 min to endolymph supplemented with 50–67 mg·mL−1 of the
protease subtilisin (type XXIV or VIII, Sigma). The otolithic membrane was

then peeled off to obtain access to individual hair bundles. Experiments
were performed at room temperature.

Microscopic Apparatus and Mechanical Stimulation. The preparation was
viewed through a 60× water-immersion objective of an upright microscope
(BX51WI, Olympus). The tip of a stimulus fiber was affixed to the kinociliary
bulb of an individual hair bundle and imaged at a magnification of 1000×
onto a displacement monitor that included a dual photodiode. Calibration
was performed by measuring the output voltages of the monitor in response
to a series of offset displacements of the photodiode. For movements of the
fiber’s tip that did not exceed ±150 nm in the sample plane, the displace-
ment monitor was linear. Stimulus fibers were fabricated from borosilicate
capillaries and coated with a thin layer of gold-palladium to enhance contrast.

The fiber was secured by its base to a stack-type piezoelectric actuator
(PA-8/14, Piezosystem Jena) driven by a custom-made power supply (Elbatech).
The voltage command to the actuator was a symmetric triangle wave that
imposed back-and-forth movements of the fiber’s base with a peak-to-peak
magnitude of 600 nm. Except during the ∼1 ms that it took to reverse the
directionality of motion at the end of each half-cycle, the absolute velocity
of the base was nearly fixed (SI Appendix, Fig. S2). In a typical run, this ve-
locity was increased sequentially from 1 to 300 μm·s−1 in nine steps. The
fundamental frequency of the stimulus thus varied from 0.8 to 250 Hz,
corresponding to a period of stimulation that decreased from 1.2 s to 4 ms.
The slowest stimulus was maintained for four cycles. At higher frequencies,
the stimulus lasted 2.4 s, corresponding to tens-to-hundreds of cycles of
stimulation at each frequency. Because piezoelectric actuators display hys-
teresis, their movements do not precisely reflect the command signal. The
actual movement of the fiber’s base was thus recorded with the displace-
ment monitor at a magnification of 294×; the measurement was performed
before or after hair-bundle stimulation. Base and tip positions of the fiber
were thus measured with the same acquisition line, which ensured that no
delay was artificially introduced between the two positions by the recording
procedure. Any delay would be erroneously interpreted as friction in our
estimates of the external force applied to the hair bundle by the fiber.

Fiber Calibration and Force Determination. We characterized the mechanical
properties of a fiber immersed in endolymph by analyzing the Brownian
motion of the free fiber’s tip while the base was clamped at a fixed position
(SI Appendix, section 2.3). The power spectrum of fluctuations was fitted by
a Lorentzian, which provided a stiffness k = 200–500 μN·m−1 and a drag
coefficient λ = 80–140 nN·s·m−1. As far as fluctuations were concerned, the
fiber thus behaved as a first-order low-pass filter with an angular cutoff
frequency ω1 = k=λ= 1:5− 5:5× 103 rad·s−1.

For each triangle wave of stimulation, we computed the mean cycle of the
fiber’s tip XðtÞ and base ΔðtÞ positions as a function of time t by performing
ensemble averages over all cycles of the corresponding waveforms. We then
computed the first 30 Fourier components of the average cycles. For the
fiber’s base, they are given by ~Δn = ð2=TÞ R T0 ΔðtÞ e+i n  ω0 tdt for 1≤n≤ 30 and
~Δ0 = ÆΔðtÞæ where T = 2π=ω0 is the period of the stimulus and i2 =−1. Similar
relations can be written for the Fourier components ~Xn of tip motion. As-
suming that the stimulus fiber behaves as a slender rod, the force applied by
the fiber’s tip on the hair bundle was then calculated as (SI Appendix, section 2)

FðtÞ=Re

 X30
n=0

h
~Fn   e

−i n  ω0 t
i!

, [3]

in which the nth Fourier component of the force is given by

~Fn =
4

β41
k α3n

�
1+ cos αn × cosh  αn

cos αn × sinh  αn − sin αn × cosh  αn
~Xn

−
cos αn + cosh  αn

cos αn × sinh  αn − sin αn × cosh  αn
~Δn

�
: [4]

Here we introduced the frequency-dependent parameter α4n = i n  ω0=ωS,
with ωS =ω1=β

4
1, ω1 the angular cutoff frequency of thermal fluctuations of

the fiber’s tip (see previous paragraph), and in which β1 ≅ 1:8751 is the
smallest positive solution of cos β1 × cosh β1 =−1. Data analysis was per-
formed with Matlab (the Mathworks, version R2011b).

Iontophoresis of a Channel Blocker and of a Ca2+ Chelator. We used ionto-
phoresis of gentamicin to reversibly block the transduction channels of a hair
bundle (12). With the same technique, we also applied the chelator 1,2-bis(2-
aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA) to sever the tip
links by locally reducing the endolymphatic Ca2+ concentration. Coarse
microelectrodes were fabricated from borosilicate capillaries with a pipette
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puller (P97, Sutter Instrument). The resistance of the electrodes was 10 MΩ
when filled with 3 M KCl and immersed in the same solution. For the
experiments the electrodes were filled with 500 mM gentamicin sulfate (G-
4793, Sigma) or with 500 mM BAPTA (A4926, Sigma). These compounds were
each dissolved in an aqueous solution containing 25 mM KCl. In each ex-
periment, the electrode’s tip was situated at ∼3 μm from the hair bundle.
Under control conditions, a holding current was applied to counteract the
diffusive release of ions from the electrode.

Signal Generation and Acquisition. All signals were generated and acquired
under the control of a computer running a user interface programmed with
LabVIEW software (version 2011; National Instruments). The command signal
controlling the movement of the base of a stimulus fiber was produced by
a 16-bit interface card at a sampling rate of 25 kHz (PCI-6733, National

Instruments). A second interface card (PCI-6250, National Instruments) con-
ducted signal acquisition with a precision of 16 bits and a sampling rate of 25
kHz. Signals coming from the displacement monitor or going to the stimu-
lation apparatus were conditioned with an eight-pole Bessel antialiasing
filter adjusted to a low-pass half-power frequency of 12.5 and 0.5 kHz,
respectively.
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Section 1: Supplementary data (Figs. S1-S4) 

 

 

Fig. S1.  Inversion symmetry of force-displacement relations.  (A)  For each velocity of 

triangular stimulation but the lowest, we superimpose the force displacement relation   (   
 )     for the positive half cycle (colors; increasing velocity from blue to red) on the relation 

 [  (    )    ] for the negative half cycle (black dashed lines).  Here,        and   is 

the hair-bundle position.  In each case, the constant X0 was obtained by finding the position of 

the local extremum near the origin in the relation Φ(X) (see Fig. 3B in the main text) and we 

set    [  (  )    (  )]  ⁄ .  Same data as those shown in Fig. 3 of the main text; the fourth 

trace from the top corresponds to the data shown in Fig. 2.   (B) Plot of the points (X0, F0) that 

were used in A to apply the inversion-symmetry transformation to the force-displacement 

relations. The color code is the same as in A. 
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Fig. S2.  Velocity of fiber and bundle movements.   (A)  The velocity     ⁄  of the fiber’s base is 

plotted as a function of base position  for all 10 triangular waveforms of base motion.   (B)  The 

velocity       ⁄  of the fiber’s tip, or equivalently of the hair bundle attached to it, is plotted 

as a function of tip position X.  Tip movements resulted from the series of stimuli shown in A.  (C)  

The arithmetic mean  ̅  [|  ( )|  |  ( )|]  ⁄   of the absolute velocities of the fiber’s tip is 

plotted as a function of the position X for the recordings shown in B.  This data is associated to 

Figs. 1-3 of the main text, with the fourth trace from the top corresponding to the data shown in 

Fig 2 (control conditions).   
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Fig. S3.  Hair-bundle activity.   (A)  Counterclockwise force-displacement cycle (arrows) in 

response to a triangular movement of the stimulus fiber’s base at a velocity of 1 µm∙s
-1

.  Note that 

oscillations are visible at the beginning of each half cycle, although the relation represents the 

average of 4 cycles of stimulation.   (B)  Spontaneous oscillations of the same hair bundle at 

~12 Hz.  Here, the fiber’s base was fixed at position  = 0.  Same cell as in Figs. 1-3 in the main 

text. 

 

 

 

Fig. S4.  Hair-bundle mechanics with disrupted tip links.   A hair bundle had its tip links 

severed by briefly applying the calcium chelator BAPTA.   (A)  The external force F, (B) the 

friction estimate Φ, and (C) the mean bundle velocity  ̅ are plotted, respectively, as a function of 

bundle position X for different velocities of triangular motion of the stimulus fiber’s base.  

Crosses in the hysteretic force-displacement cycles shown in A mark the origin (X = 0, F = 0) of 

the plots.   (D)  Force Φ at X = 0, noted ΦX, as a function of bundle velocity  ̅  at this position 

for 10 different cells (black disks corresponds to the data shown in A-C).  We performed linear 

fits to each of these relations; the ensemble average of the fits is shown in Figs. 3C of the main 

text. 
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Section 2: Mechanical description of a stimulus fiber 

Triangular waveforms of motion applied at the base of a flexible stimulus fiber result in complex, 

frequency-dependent drag forces along the length of the fiber.  These drag forces are important 

because they affect the magnitude of the external force exerted by the fiber at its tip on an 

attached hair bundle.  In this section, we show analytically how measurements of the fiber’s tip 

and base movements in a viscous fluid allow for a precise computation of the external force 

exerted by the fiber. 

The stimulus fiber is described as a slender rod of length L immersed in a viscous fluid.  A 

time-dependant movement (t) is applied at the fiber’s base in a direction perpendicular to the 

fiber’s axis.  As the result of frictional forces distributed along the whole length of the fiber and 

of the point load FHB(t) exerted by an attached hair bundle at the fiber’s tip, the fiber bends.  The 

two-dimensional bending profile is characterized by a function  (   ) of position y and time t 

(Fig. Fig. S5). 

 

Fig. S5.  Geometry of a stimulus fiber.  (A)  Schematic representation of a stimulus fiber 

attached to a hair-cell bundle.  A movement  imposed at the fiber’s base results in a motion X at 

the fiber’s tip.  (B) Bending profile u(y) of the fiber.  The bundle exerts a point force FHB at y = L. 

To describe the mechanical properties of the fiber, we introduce a friction coefficient per unit 

length , associated to movements perpendicular to the rod’s axis, and a flexural rigidity      
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that characterizes the fiber’s elastic resistance to bending forces.  Here, E is the Young’s modulus 

and I is the geometrical moment of inertia of the cross-section.  Assuming that the fiber is 

cylindrical and homogeneous, the parameters  and  do not vary along the length of the fiber.  

The beam equation states that the bending moment M at position y, which results from all the 

forces exerted at positions       , is proportional to the local curvature (1, 2).  For small 

deflections, this condition can be written as: 

 (   )     ( )  (   )  ∫   ( 
   )  (    )      

   

   
(   )

 

 
 , (S1) 

in which      
  

  
 is the drag force per unit length.  Taking the second derivative of Equation 

S1 with respect to y, we get a differential equation that reflects force balance per unit length of 

the fiber (3, 4): 

  
  

  
   

   

          (S2) 

2.1. Force exerted by a stimulus fiber on a hair-cell bundle 

We aim at calculating the force F(t) exerted by the fiber on a hair bundle (or any other object) 

attached at the fiber’s tip.  Because of mechanical reciprocity, this force is the opposite of the 

external force FHB(t) applied on the fiber’s tip and given by: 

  ( )      ( )        (     )      (S3) 

Here and in the following, primes denote spatial derivatives.  The force can thus be derived from 

the bending profile of the fiber. 

To solve the hydrodynamic beam equation (Eq. S2), we consider a stimulus resulting from a 

periodic movement   ( ) of the fiber’s base, as is the case in our experiments.  We can then write 

the stimulus as a Fourier series: 

 ( )    (∑ [ ̃   
       ]  

   ),    (S4) 

where      ,       ⁄  is the period of the stimulus,  ̃  
 

 
∫  ( )

 

 
             for n ≥ 1 

and  ̃  〈 ( )〉.  In turn, the response  ( )    (∑ [ ̃   
       ]  

   ) and the profile  (   )  
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  (∑ [ ̃  ( )         ]  
   ) follow similar expressions.  Using the variable  ̅    ⁄ , Equation S2 

indicates that each Fourier component of the profile obeys: 

    ̃ 
    ( ̅)    

   ̃ ( ̅) .     (S5) 

We have here introduced the adimensional number 

  
           ⁄  ,  (S6) 

in which 

    (   )⁄  ,  (S7) 

is a characteristic elasto-hydrodynamic frequency (5) and     is the frequency of the n
th

 Fourier 

component (n ≥ 1).  The modulus of the number defined in Equation S6 compares the magnitudes 

of frictional and elastic forces at angular frequency    . 

Equation S2 contains a fourth-order derivative; we thus need four boundary conditions to 

determine the profile  (   ).  Because the fiber is clamped at its base (y = 0), we must impose 

 (     )   ( ) and   (   )   .  In addition, at y = L, the position of the fiber is that of the 

hair bundle and there is no torque:  (     )   ( ) and   (   )       Correspondingly, the 

solution to Equation S5 must obey  ̃ ( )   ̃  ,  ̃ 
 ( )    ,  ̃ ( )   ̃  , and  ̃ 

  ( )   .  

Using the Ansatz 

 ̃ ( ̅)         (   ̅)         (   ̅)        (   ̅)        (   ̅) , (S8) 

we find the solution to Equation S5 with: 

   [  ̃   (            )     ̃  (             )]   ⁄  , 

   [ ̃   (            )     ̃  (             )]   ⁄ , 

   [ ̃   (            )     ̃  (             )]   ⁄ , 

   [  ̃   (            )     ̃  (             )]   ⁄ ,  

and the denominator      (                         ).  From Equation S3, we 

then calculate the Fourier components  ̃  (    )   
   ( ̅   )  of the force 

 ( )    (∑ [ ̃   
       ]  

   )   (S9) 
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applied by the fiber at its tip: 

 ̃  
 

     
  [

               

                         
  ̃   

            

                         
 ̃  ]. (S10) 

From measurements of the fiber’s tip X(t) and base (t) movements, we can compute their 

Fourier components and in turn use Equations S9-S10 to calculate the external force F(t) applied 

to the hair bundle.  The only unknowns here are the typical fiber stiffness      and drag   , 

whose ratio set the characteristic elasto-hydrodynamic frequency     (   )⁄  and in turn the 

values of the parametersn.  As we shall see below (paragraph 2.3), stiffness and drag can be 

estimated by analyzing the thermal fluctuations of the fiber’s tip. 

2.2. Low-frequency limit of the stimulus force 

In the low-frequency limit |  |   , we can expand  ̃  (Eq. S10) in powers of    .  Keeping the 

first-order term only, we find: 

 ̃    ( ̃    ̃  )       (     ̃       ̃  )    (S11) 

in which we recognize the stiffness of a cantilever beam (2) 

       ⁄   (S12) 

and the friction coefficients 

    
  

   
    (S13) 

and 

    
  

   
  .  (S14) 

In the temporal domain (Eq. S9), the force can then be written as: 

 ( )    (   )        ̇       ̇    (S15) 

In the low-frequency limit, a movement of the fiber’s base produces a force that can be written as 

a linear combination of elastic and frictional contributions (6).  For positive movements of both 

the fiber’s base and tip, the force applied by the fiber can be much smaller than the elastic force 

that would be measured if the fiber assumed a static deflection of the same magnitude.  Note that 
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    (    ⁄ )             is of the same order of magnitude as    .  Because in our 

experiments  ̇   ̇, movements of the fiber’s base results in significant friction at the fiber’s tip.  

This contribution to the external force had been ignored in earlier dynamic force measurements 

(7); omitting it here would result in a large overestimation of viscous drag on the hair bundle. 

2.3. Stiffness and drag from thermal fluctuations at the tip of a stimulus fiber 

We show here how the typical fiber stiffness      and the characteristic elasto-hydrodynamic 

frequency    can be extracted from the power spectrum of thermal fluctuations of the free fiber’s 

tip.  These parameters are necessary and sufficient to calculate the force exerted by the fiber on 

the bundle (Eqs. S9-S10). 

We consider that the fiber’s base is held at a fixed position  = 0 and that no external force is 

applied at its tip (FHB = 0).  The bending profile  (   ) must solve the hydrodynamic beam 

equation (Eq. S2) with the boundary conditions: 

  (   )   ,   (   )    ,    (   )    , and     (   )    . (S16) 

The solution can be written as a sum of modes (4): 

 (   )  ∑   ( )   ( )     (S17) 

with 

  ( )     (    )    (S18) 

  ( )     (  
 

 
)      (  

 

 
)     (   (  

 

 
)      (  

 

 
))    (S19) 

There,    (   (  )      (  )) (   (  )      (  ))⁄  and the number n is solution of 

   (  )      (  )    . 

We note that the spatial eigen-modes un are orthogonal with ∫   ( )   ( )          
 

 
, 

where     is the Kroenecker delta.  In addition, the eigen-frequency n of mode n obeys: 

      (  ) ,  (S20) 



10 
 

in which    is given by Equation S7. 

To describe the thermal fluctuations of the fiber’s profile, we add a noise term  to the 

hydrodynamic beam equation (Eq. S2): 

  
  

  
   

   

   
  (   )       (S21) 

We use Gaussian white noise.  The noise term is zero on average and its intensity is characterized 

by the autocorrelation: 

 〈 (   )  (     )〉          (    )  (    )     (S22) 

Combining Equation S21 with Equations S17-S19, we get: 

 
   

  
         (  )⁄        (S23) 

in which   ( )  ∫  (   )   ( )   
 

 
 and 〈  ( )   (  )〉       (  )      (    )    Using 

tildes to denote Fourier transforms, with for instance  ̃ ( )  ∫   ( )         
  

  
, Equation S23 

yields: 

  ̃ ( )  
 

     
  

 ̃ ( )

  
      (S24) 

with 〈 ̃ ( )  ̃ (  )〉        (  )      (    )    The power spectrum  ̃( ) of the fiber’s 

tip is defined by: 

 〈 ̃(   ) ̃ (    )〉       (    )  ̃( )      S

Combining Equations S17, S24, and S, we get: 

  ̃( )  
     

 
∑

 

  
            (S26) 

in which we have used   
 ( )    and introduced the friction coefficient       ⁄ . 

Being a sum of Lorentzians, the power spectrum is not a Lorentzian.  However, because 

     (    ⁄ )       ⁄ , the first mode dominates at low frequencies.  We can thus 

approximate  ̃( ) by a single Lorentzian (8, 9): 

  ̃( )  
     

 

 

  
           (S27) 
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The fiber is then characterized by the stiffness       associated to the first mode of vibrations. 

Fig. S6.  Fluctuations of a stimulus fiber.  This 

doubly-logarithmic plot shows the power spectral 

density of motion of a stimulus fiber’s tip as a 

function of frequency (grey).  A Lorentzian fit to 

the power spectrum (red line) yields the stiffness 

k = 71 µN·m
-1

, the drag coefficient 

 = 124 nN∙s∙m
-1

, and the cutoff frequency 

fc = 92 Hz.  The fit was restricted to frequencies 

below the abscissa of the red disk but is here 

plotted over the whole frequency range.  

Identifying the cutoff frequency with the 

characteristic frequency   (  )⁄  of the first mode 

of fiber fluctuations allowed for the calculation of 

the frequencies      (    ⁄ )  of all the other 

modes and thus for an estimate of the full spectrum (Eq. S26; black line).  The first mode 

dominates the spectrum at frequencies below 1 kHz, corresponding to frequencies        , 

but deviations become apparent at higher frequencies.  The thermal fluctuations of a fiber’s tip 

were recorded for 30 s at a sampling rate of 25 kHz.  To get a high dynamical range, we chose 

here a fiber that was significantly softer than those actually used in our force measurements. 

A fit to the data with Equation S27 provides an estimate of the elasto-hydrodynamic 

frequency: 

         
       (S28) 

This parameter is required to compute the force F(t) (Eqs. S6, S9-S10) exerted by a periodic 

stimulus on a hair bundle attached at the fiber’s tip as well as its low-frequency approximation 

(Eq. S15).  For the latter, we have: 

    (    
 ⁄ )           ,     (S29) 

     
  

  
         ,     (S30) 

     
  

  
         .     (S31) 

With typical values k = 200 µN∙m
-1

 and  = 100 nN·s∙m
-1

, we get 1 = 2000 rad∙s
-1This yields 

an elasto-hydrodynamic frequency S = 162 rad∙s
-1

.  For a triangular waveform of motion (t) 

with a peak-to-peak amplitude of 600 nm, the condition |  |    for applying the low-frequency 

approximation of the force (Eq. S15) calls for velocities of the fiber’s base | ̇|   30 µm∙s
-1

.  
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Because we applied fiber’s velocities up to 300 µm∙s
-1

, we expect the low-frequency estimate to 

deviate significantly from the exact expression given by Equations S9-S10.  We quantify the 

deviation below. 

2.4. Experimental test of force measurements with a stimulus fiber 

To test both the validity and the accuracy of our force measurements, we analyzed the behavior 

of a stimulus fiber under circumstances for which the fiber’s tip is not attached to any accessory 

structure and is thus free to move in the fluid.  As in regular experiments, we measured the 

position of the fiber’s tip X(t) in response to symmetric triangular waveforms of motion (t) of 

the base (see Materials and Methods in main text).  As a result of viscous drag exerted by the 

surrounding fluid, the fiber is expected to bend (   ).  Because the tip is here unconstrained, 

however, the fiber’s elastic resistance to bending and the drag force must be equal and opposite: 

the estimated net force F at the fiber’s tip should be null (F = FHB =0 in Fig. Fig. S5B). 

When we used the exact harmonic solution to the hydrodynamic beam equation (Eq. S2), we 

calculated forces (Eqs. S9-S10) that were indeed very low in magnitude (Fig. S7A).  Although 

the force could grow proportionally to the tip position, especially at large velocities (red line in 

Fig. S7A), the resulting absolute slope was less than 25 µN∙m
-1

, which is only 2.5% the stiffness 

of an intact hair bundle.  An error in the calibration of the photometric system that was used to 

measure tip positions could easily explain the parasitic stiffnesses that were measured.  In 

addition, the force-displacement relation displayed very little hysteresis over a cycle of 

stimulation (Fig. S7A).  Correspondingly (Fig. S7B), the friction estimate Φ, defined as half the 

vertical height of the hysteretic cycle (see section 3), was less than half a piconewton at all 

positions (300 nm) and over the whole velocity range (1-300 µm∙s
-1

) that we explored. 

At low velocities (<35 µm∙s
-1

), the low-frequency approximation of the force (Eq. S15) 

provided a satisfactory representation of the full estimate (blue line in Fig. S7A and C), as 

expected.  However, as the fiber velocity increased, hysteresis appeared near the extremes of 

fiber motion, where the fiber abruptly reversed its direction of motion and thus excited high-
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frequency modes of fiber deformation.  Correspondingly, the friction estimate Φ peaked in this 

range of positions.  Near the center of the periodic movement (X = 0), the friction estimate 

remained near zero for velocities up 150 µm∙s
-1

 (Fig. S7E).  However, as they grew in magnitude 

and broadened with stimulation velocity, the friction peaks eventually merged, resulting in 

apparent friction forces even in the center. 

 

 

Fig. S7.  Force estimated at the tip of a free fiber moving in water.  Symmetric triangular 

waveforms of motion (t) were applied to the fiber’s base at three different velocities (blue: 34 

µm∙s
-1

, green: 155 µm∙s
-1

, red: 285 µm∙s
-1

).   (A) and (C):  Force F exerted by the fiber’s tip as a 

function of tip position X.   (B) and (D):  Force Φ, calculated as half the vertical height of the 

hysteretic cycles shown in A and C, as a function of tip position.   (E)  Force Φ at X = 0, noted 

ΦX, as a function of tip velocity,  ̅ , at this position.  The forces were estimated by using either 

Equations S9-S10 (panels A, B and black disks in panel E) or the low-frequency approximation 

given by Equation S15 (panels C, D and white squares in panel E).  The mechanical properties of 

the fiber were calibrated by extracting the effective stiffness k = 162  3 µN∙m
-1

 (mean  SD; 

n = 2) and friction coefficient λ = 123  4 nN∙s∙m
-1

 (mean  SD; n = 2) from the thermal 

fluctuations of the fiber’s tip (Eq. S27). 
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Section 3: Friction estimate from hysteresis in the relation between external force and 

position 

In this section, we discuss how to estimate friction forces by analyzing hysteresis in the relation 

between external force and position.  We first consider the simple case of a passive system that 

undergoes a cyclic movement.  A positive movement from position      to position      is 

followed by the reverse movement from      to     .  During the positive half cycle, the system 

at position   is subjected to an external force   ( ).  For a small positive displacement dX from 

position X, the work           is performed on the system.  A part     of this work 

changes the potential energy  , while the remaining part    
          is dissipated in 

the thermal bath.  The force   
     

   ⁄  is the friction force associated with energy 

dissipation.  We can also define an elastic force, also called reactive,   
       ⁄ .  The total 

force    is then the sum of the reactive and dissipative forces:      
    

 .  Similarly, if we 

consider the reverse process, which corresponds to the negative half cycle, the applied force is 

  ( ).   For a displacement –dX from position  , the performed work is           .  The 

applied force can be written as      
    

 , in which   
  and   

  are the reactive and 

dissipative forces, respectively.  Note that the reactive force does not change sign when the 

directionality of motion is reversed (      ), whereas the dissipative force does. 

The dissipated work during a cycle is  

  
    

   ∫ [  ( )    ( )]   
    

    
  .   (S32) 

Because reactive terms do not contribute to dissipation, the reactive forces obey: 

∫ [  
 ( )    

 ( )]   
    

    
    .   (S33) 

To ensure this condition for any choice of      and     , we must impose 

  
 ( )    

 ( )  .  (S34) 

Based on these properties, we introduce the force 

 ( )  [  ( )    ( )]  ⁄   ,   (S35) 
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which, using Equation S34, can also be written as 

 ( )  [  
 ( )    

 ( )]  ⁄   .   (S36) 

This expression shows that  ( ) is purely dissipative and can thus be interpreted as a friction 

force. 

We now consider a system that displays inversion symmetry with respect to a specific 

reference point at position    (see Fig. S1).  Without loss of generality, we set     .  Inversion 

symmetry imposes that we can write: 

  ( )      (  (  )    )  ,   (S37) 

where    [  ( )    ( )]  ⁄ .  From Equation S37, we find that   
 ( )    

 (  ) and thus 

 ( )  [  
 ( )    

 (  )]  ⁄    (S38) 

This shows that  ( )   (  ) is symmetric and that  ( ) is the average of two dissipative 

forces on the positive half cycle.  In addition at    ,   ( )    
 ( ) is the true dissipative 

force. 

One can generalize this formalism to active systems subjected to external forces.  In this case, 

energy resources of biochemical origin can be transduced into mechanical work.  The change of 

potential energy is            
     

 , where    
  is the chemical work performed 

during a positive or negative half-cycle, respectively.  We introduce the active force   
  

   
   ⁄ , such that  

     
    

    
   .   (S39) 

Over one cycle, the total dissipated energy is now given by: 

  
    

     
    

  ∫ [  ( )    ( )]   
    

    
  .  (S40) 

As a result, hysteresis in the relation between the external force and position cannot be attributed 

solely to the effect of dissipative forces.  Active forces contribute additive work, which can be of 

positive or negative sign.  In the latter case, as in our experiments (Fig. S3), activity can result in 

counterclockwise circulation around the hysteretic cycle and thus the net work performed by the 
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external force over a cycle can be negative.  The total energy dissipated (left-hand side of 

Eq. S40), however, is always positive.  From Equations S39 and S40, we obtain that Equations 

S33 and S34 hold again.  The force Φ defined by Equation S35 can then be written as: 

 ( )  [  
 ( )    

 ( )    
 ( )    

 ( )]  ⁄    (S41) 

The active force contributes to the force Φ.  Thus, hysteresis in the force-displacement relation 

can yield a good estimate of the mean dissipative force only under conditions for which the 

effects of the active process can be neglected.   
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Section 4: Theory of friction from transduction channels’ gating forces 

This section describes analytically how friction forces emerge from the gating-spring model of 

mechanoelectrical transduction when the finite activation kinetics of the transduction channels is 

taken into account.  We ignore here viscous drag and adaptation.  We consider that the hair 

bundle follows a symmetric triangular waveform of motion X(t) as a function of time, with 

            and XMIN = XMAX.  On each ramp, the velocity is thus constant with   ( )  

   ( )   .  Here and in the following, the superscripts denote the directionality of bundle 

motion.  By convention, a positive movement increases tip-link tension and, in turn, the open 

probability of the transduction channels. 

4.1. Delayed gating of the transduction channels 

The transduction apparatus of the hair bundle is composed of N transduction channels that 

operate in parallel (10) and that are each mechanically connected to an elastic gating spring.  A 

transduction channel is described by two states, open or closed (Fig. S8A), and assumes an open 

probability Po.  In the gating-spring model of mechanoelectrical transduction (11, 12), the energy 

difference   ( )     (    ) between the two states is a linear function of bundle position 

X.  In this relation, the parameter Z represents the reduction in gating-spring tension —the gating 

force— upon channel opening and X0 is the position at which the two states have the same 

energy.  At thermal equilibrium, the channels’ open probability       is related to bundle 

position by the Boltzmann function 

     [     ( (    )  ⁄ )]⁄ .    (S42) 

The open probability varies from 5% to 95% over a narrow range of deflections 6, where 

   (   )  ⁄  is a lengthscale that characterizes the mechanosensitivity of the transduction 

apparatus and kBT is the thermal energy.  Without loss of generality, we set      and thus 

  (  )    ⁄ . 
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When the bundle moves, the open probability changes.  However, because channel 

equilibration is not instantaneous (11, 13), the open probability does not equal its equilibrium 

value (     ).  Using first-order kinetics, channel activation can be described by a relaxation 

process: 

   
   

  
        ,     (S43) 

in which the activation time     (       )⁄  is the inverse sum of the transition rate     

between the closed and open states of the channel and the rate     for the reverse transition 

(Fig. S8A).  Combining the gating-spring model of mechanoelectrical transduction with Kramers’ 

theory for thermally-activated barrier crossing (11), we write that the transition rates depend on 

the position of the hair bundle as:   

    ( )        (    ⁄ )  ,     (S44) 

    ( )        ( (   )   ⁄ )  .    (S45) 

In these equations,       ( )     ( ) is the transition rate for    , which corresponds 

here to      ⁄ , and the dimensionless parameter       represents the fractional distance 

to the transition state.  The activation time is then given by: 

   ( )      [   (    ⁄ )     ( (   )   ⁄ )]⁄   ,   (S46) 

where    (   )⁄  is the activation time for small deflections near an open probability of 1/2.  

The relation   ( ) between the activation time and position is bell-shaped with a maximum at 

X = 0 (Fig. S8B).  In the following, we consider the case      , for which the transition state is 

positioned half-way in between the open and closed states of the channels (see a discussion of 

this choice in the paragraph 4.4).  Under such condition, the relation   ( )         ( (  )⁄ )⁄  

is an even function of position X. 

For a ramp of positive motion, we write          .  In the limit of large displacements 

(       ), the integration of Equation S43 yields: 

   
 ( )  

 

  
∫   ( )   (   )

 

  
   ,    (S47) 



19 
 

in which we have introduced the memory kernel  

 (   )       ( (  )⁄ )     [  
 

  
 [    ( (  )⁄ )      ( (  )⁄ )]]. (S48) 

On the way back, the position varies as           .  We find that the open probability 

obeys the symmetry relation: 

   
 ( )      

 (  ).     (S49) 

If the channels were able to equilibrate instantaneously (   ), their open probability would 

be given by the steady-state value (Eq. S42) and thus would not depend on the directionality of 

bundle motion:   
 ( )    

 ( )    ( ).  Because channel activation takes time (Eq. S43), 

however, the channels’ open probability depends on the history of bundle motion, i.e. on past 

positions (Eq. S47).  As a result,  

   
 ( )    ( )    

 ( ).     (S50) 

The relation between open probability and position displays hysteresis and it takes larger 

displacements, in the positive and negative directions, to open and close half the channels, 

respectively, than for quasi-static deflections (Fig. S8C-D).  In the following, we refer to the 

width of the hysteretic cycle Po(X) at Po = 0.5 as the “gating shift”.  At low velocities (     

  ⁄ ), the memory kernel  (   )     ( (   ) (  )⁄ ).  For small deflections (     ), 

we can use the linear expansion   ( )       (  )⁄ .  Using Equation S47, we then find 

  
 ( )    ⁄  (    ) (  )⁄ .  Thus, when the bundle moves in the positive direction, the 

deflection     
  at which half the channels are open is given by: 

     
          (S51) 

Because     
       

  (Eq. S49), the gating shift        
      

       increases in 

proportion to velocity with a slope that provides twice the characteristic activation time   

(Fig. S8D).  Note that   
 ( )    ( )    (  )⁄ .  At high velocities (    ),   

 ( )  

 ( )  {     [   (  )      ( (  )⁄ )⁄ ]}, where   is the Heaviside step function.  We 

then get: 
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        ( ).     (S52) 

Thus, the gating shift displays a sublinear growth with velocity (Fig. S8D). 

 

Fig. S8.  Hysteresis from 

finite activation kinetics of 

the transduction channels.   
(A)  Schematic energy 

landscape of a transduction 

channel with two states 

(open and closed).  The 

transition state resides at a 

fractional distance α from 

the closed state.  The 

channel switches between its 

two states with rate 

constants kCO and kOC.  The 

energy difference   ( ) 

between the two states 

depends on bundle position 

X.   (B)  The activation time of the channel is plotted as a function of bundle position in the case 

α = 0.5.  Time and position are normalized, respectively, by the activation time τ near P∞ = 0.5, 

here corresponding to X = 0, and by the characteristic lengthscale  of mechanosensitivity.   (C)  

Open probability of the transduction channels as a function of the normalized hair-bundle 

position when the bundle is subjected to a series of symmetric triangular waveforms of motion.  

Bundle velocity varies from Vc to 10×Vc in 9 steps, where      ⁄  is a characteristic velocity.  

The red curve corresponds to the steady-state relation   ( ).  The hysteretic cycles (black) 

display inversion symmetry with respect to the point marked by a red disk and get broader at 

increasing bundle velocities.  As a result, the larger the velocity, the further the bundle has to 

move in each direction before the channels can gate.  The bundle displays a clockwise circulation 

around the cycles (arrows).   (D)  Normalized gating shift as a function of normalized bundle 

velocity.  The tangent going through the origin (red line) has a slope of 2. 

4.2. Hair-bundle friction from delayed gating forces 

The direct mechanical coupling between the transduction channels and the gating springs 

imposes a reciprocal relation between the channels’ open probability and gating-spring tension 

(8, 14).  Ignoring viscous drag and adaptation, the relation between the external force F and the 

hair-bundle position X can be written as: 

  ( )         (  ( )     )    ,    (S53) 
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where  ( )     at steady state.  For large deflections, the hair bundle behaves as a Hookean 

spring of stiffness    that corresponds to the combined stiffness of gating springs and 

stereociliary pivots.  In contrast, within the narrow region of deflections that elicit a significant 

change of the channels’ open probability Po, gating forces of magnitude Z reduce the slope 

    ⁄            ⁄  of the force-displacement relation and thus effectively soften the 

hair bundle.  Gating compliance is maximal where the derivative      ⁄  is the highest, which 

happens near        (Fig. S8C). 

When the hair bundle is subjected to triangle stimulation, the channels’ open probability at any 

given position is smaller on the positive half cycle than that on the negative half cycle (Eq. S50, 

Fig. S8C).  As a result,   ( )    ( ) and the force-displacement relation displays hysteresis 

(Fig. S9A).  Hysteresis reflects the gating shift between the positions     
  where half the channels 

are open (Fig. S8C) or, equivalently, between the positions of maximal gating compliance 

(Fig. S9B).  Thus, although there is no explicit source of dissipation, the hair bundle experiences 

friction.  Following the general theory developed in Section 3, the external force         
  

may be written as a combination of a reactive force    and of a dissipative force   .  Note that the 

reactive force does not depend on the directionality of bundle motion   ( )    
 ( )    

 ( ) 

(Eq. S34).  At any given position, the reactive force can here be obtained by allowing the 

transduction channels to reach steady state at this position, i.e. by imposing       in the force-

displacement relation (Eq. S53): 

   ( )         (  ( )     )    .   (S54) 

The dissipative component of the external force —the friction force— is then given by: 

   
 ( )      (  ( )    

 ( )).    (S55) 

Equation S55 clarifies that friction is here the direct consequence of the finite activation kinetics 

of the transduction channels, for this property imposes that the open probability   
  be different 

than its steady-state value    (Eq. S43).  On each half cycle of triangular motion, the dissipative 

force depends on position and peaks at the position     
 (     

 ) where the slope of the force-
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displacement relation matches hair-bundle stiffness at steady state (Fig. S9B-C).  Note that 

friction peaks at opposite positions on the positive and negative half cycles. 

To estimate the true friction force   
   (     ), it is necessary to measure both the 

external force and its reactive component as a function of bundle position.  In the case of 

oscillatory hair bundles, the relation   ( ) contains an unstable region of negative stiffness that is 

difficult to measure accurately (14).  As demonstrated in Section 3, we can nevertheless 

characterize friction by measuring the half-height of the hysteretic force-displacement relation: 

  ( )  [  ( )    ( )]  ⁄ .    (S56) 

Because   
 ( )    

 ( ), the force Φ( )  [  
 ( )    

 ( )]  ⁄  represents the arithmetic mean 

of the absolute friction force on the positive half cycle and that on the negative half cycle, at the 

same position X.  Using equation S53, the force Φ can be written as 

  ( )  (   ⁄ )[  
 ( )    

 ( )].    (S57) 

Fig. S9.  Channel friction.   (A)  External force F as a function 

of hair-bundle position X.  At steady-state (black line), the 

external force is purely reactive:  ( )    ( ).  When the 

hair-bundle follows a triangular waveform of motion, a 

dissipative force —channel friction— adds to the reactive 

component of the external force, resulting in a hysteretic cycle.  

The positive and negative half cycles   ( ) are shown in blue 

and cyan (directionality indicated by arrows), respectively.  

They display inversion symmetry with respect to the origin 

(black disk).   (B)    Hair-bundle stiffness, defined as the 

derivative of the relations shown in A, is plotted as a function 

of bundle position.  Stiffness (blue and cyan) is minimal at 

positions     
  nearly, but not precisely, half the channels are 

open.   (C)    Dissipative component of the external force 

  
   (     ) as a function of bundle position (blue and 

cyan).  The relation between the mean friction force  ( )  
[  

 ( )    
 ( )]  ⁄  and bundle position is plotted in magenta.  

Velocity and amplitude of triangular motion: V = 100 µm∙s
-1

 

and A = 100 nm.  Parameters in Table S1 (SI Appendix section 

5). 
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Combining Equation S57 with Equations S47-S49 yields a bell-shaped relation between the mean 

friction force Φ and bundle position X, with a maximum at the position where half the 

transduction channels are open at steady state, here X = 0 (magenta line in Fig. S9C).   

Increasing bundle velocity results in the broadening of the force-displacement cycles (Fig. 4A 

in main text).  At the peak (X = 0), the force Φ increases with bundle velocity as: 

  (     )   (   ⁄ ) [
 

  
∫   ( )    (       )

 

  
     ].  (S58) 

The relation between channel friction and velocity is nonlinear.  When the velocity is large 

enough that    becomes comparable to the characteristic lengthscale , the channel friction force 

displays a sublinear growth (Fig. S10) that eventually saturates at the maximum value      

   ⁄  at large velocities (    ). 

Fig. S10.  Effect of bundle velocity on channel 

friction.  Force Φ at X = 0, noted ΦX, as a function of 

bundle velocity V when dissipation comes from 

transduction channels only.  At large velocities, the 

friction force saturates at           .  The red 

line represents the initial slope, noted λC, of the 

relation ΦX(V).  Parameters in Table S1 (SI Appendix 

section 5). 

 

At low velocities (       ⁄ ), only the values of u near zero contribute to the integral in 

Equation S58.  In turn, we use the approximations  (       )     ( (  )⁄ ) and    

     (  )⁄ .  We then find the linear regime of friction: 

  (     )     ,     (S59) 

with the friction coefficient 

        (    )⁄ .     (S60) 

With parameters listed in Table S1, we get     1 µN∙s∙m
-1

.  This value is orders of magnitude 

larger than that expected simply from viscous drag associated with conformational changes of the 
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channels moving in a fluid.  Indeed, in this case we would estimate a friction coefficient on the 

order of              0.1 nN∙s∙m
-1

.  Here, d = γD (see Table S1) corresponds to the size 

of the conformational change associated to channel gating, γ  0.14 is the projection factor 

between tension in the oblique tip link and force along the horizontal axis of bundle stimulation, 

and we chose a viscosity   comparable to that of water. 

4.3. Channel friction versus viscous drag for low-frequency and auditory hair cells 

Channel friction is expected to provide a significant contribution to hair-bundle mechanics only if 

the bundle operates in the low-velocity regime of the nonlinear relation   ( ) (Fig. S10).  

Indeed, channel friction displays a sublinear growth with velocity, whereas viscous drag on the 

hair-bundle structure increases in proportion to velocity (15).  Viscous drag will thus eventually 

outgrow channel friction whenever bundle velocities become high enough that the effect of 

channel gating saturates.  This is the case when the bundle velocity V is much larger than the 

characteristic velocity      ⁄ , where       ⁄  is a lengthscale that we had introduced 

earlier in Eq. S42, Z is the gating force and τ is the channel activation time.  For saccular hair 

bundles from the bullfrog, we calculate VC = 10 µm/s (parameters in Table S1).  The sensitivity 

of oscillatory hair bundles to periodic stimuli peaks at a characteristic frequency that is near the 

frequency of spontaneous oscillations (16).  A sinusoidal stimulus that evokes a bundle 

movement at the characteristic frequency (~10 Hz; see Fig. S3) with an amplitude of 10 nm 

(   ) moves the bundle at velocity V  0.6 µm/s << VC.  In this low-velocity regime, both 

channel friction and viscous drag increase in proportion to bundle velocity.  Consequently, 

channel friction can be described by the friction coefficient given by Eq. S60; its value is about 

tenfold larger than that characterizing viscous drag (     0.1 µN∙s/m; see main text).  For 

stimulation at the cell’s characteristic frequency, channel friction thus dominates viscous drag by 

nearly tenfold.  If we now stimulate the same bundle at 1 kHz, the bundle velocity is a thousand 

times larger and thus V/VC >> 1.  Channel friction in turn saturates at its maximal value of 20 pN 
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(Fig. S10).  On the other hand, viscous drag produces a frictional force of 60 pN.  At 1 kHz, 

channel friction is only 25% of the total frictional force; this value drops to 2.5% at 10 kHz. 

Does this imply that channel friction has only a marginal effect at auditory frequencies?  

Auditory frequencies are detected by dedicated hair cells that are endowed with hair bundles that 

have different characteristics than those of the bullfrog’s sacculus.  The bundle morphology, in 

particular the number of stereocilia and their height (17), as well as the channel time (according 

to (13)), varies systematically with the cell’s characteristic frequency.  Stereocilia are generally 

shorter and more numerous, and the transduction channels are faster for auditory hair cells than in 

the bullfrog’s sacculus.  Although decreasing the channel time tends to diminish the magnitude of 

channel friction (Eq. S60), increasing the number of channels and decreasing the bundle height 

(see below) does the opposite.  Therefore, whether or not channel friction is relevant at auditory 

frequencies depends on the numerical values of these parameters. 

As an illustrative example, consider an outer hair cell from the apical turn of the rat cochlea.  

We again assume a sinusoidal stimulus near the cell’s characteristic frequency, which is here 

~4 kHz (18).  The hair bundle is now composed of N = 100  stereocilia and has a height h = 4µm.  

This values are, respectively, about twice and half those of a hair bundle from the frog (19).  In 

these cells, the time course of channel activation (<50 µs) is too fast to be accurately measured by 

current techniques (13, 20).  As a conservative estimate, we use a channel time τ = 10 µs.  

Because the channel time is 25-fold smaller than the period of the stimulus, the bundle again 

operates in the low-velocity regime of the relation   ( ), where channel friction matters 

(Fig. S10): with an amplitude of motion of   , V/VC = 0.5 < 1.  Channel friction is thus nearly 

proportional to bundle velocity and characterized by the friction coefficient    given by Eq. S60.  

To compare rat and frog bundles at their respective characteristic frequencies, we assume that the 

gating-spring stiffness kGS and the gating swing d stay the same in the two types of hair cells.  

The gating force         depends on bundle geometry via the projection factor     ⁄  (12) 

that relates forces produced along the oblique axis of the tip links to those measured 

experimentally.  We thus get   
     

    ⁄  (         ⁄ )  (         ⁄ )  (         ⁄ ), 
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which yields   
      

    
    ⁄ .  On the other hand, the drag coefficient of the rat bundle might 

be slightly smaller than that in frog, due to the twofold reduction in bundle height (18).  

Assuming   
      

    
   and using   

    
  

    
⁄  = 10 (Table S1), we thus find   

     
   ⁄  

(  
    

  
    

⁄ )        ⁄ .  These arguments suggest that channel friction can be larger than 

viscous drag even in the case of an auditory hair cell. 

4.4. Point-inversion symmetry 

Because   
 ( )      

 (  ) (Eq. S49), the force-displacement cycle displays inversion 

symmetry with respect to the point of coordinates (        ):   ( )      (  (  )  

  ).  As a result, the mean friction force  ( ) is an even function of X:  ( )   (  ).  As 

already discussed in section 3, at the position of point-inversion symmetry,  ( )    
 ( )  

  
 ( ) is the true friction force.  Remarkably, the same symmetries, which rely here on our 

choice       in Equation S46 of the two-state model, are observed in our experiments (Fig. S1).  

This observation suggests that the kinetics of the conformational change associated with gating of 

a transduction channel may result from thermal crossing of an energy barrier that is positioned 

nearly half way between the open and closed states of the channel along the axis of movement. 
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Section 5: Physical description of active hair-bundle mechanics with finite activation 

kinetics of the transduction channels (with parameter Table S1) 

In this section, we modify a published description of active hair-bundle mechanics (21, 22) to 

account for the kinetics of transduction channels’ gating.  We compute the time-dependent 

external force 

 ( )     
  ̅

  
    ( ̅   ̅      )      ̅   (S61) 

to impose a symmetric triangular waveform of deflection  ( )   ̅    ̅  to the hair bundle.  

Deflection is measured with respect to the steady-state position  ̅  that the hair bundle assumes 

when    .  In response to the stimulus, adaptation motors display a movement   ( )  

 ̅ ( )   ̅    with respect to their steady-state position  ̅   .  The position  ̅ ( ) and the open 

probability   ( ) of the transduction channels vary with time according to: 

  
  ̅ 

  
    ( ̅   ̅      )     ( ̅   ̅   )      (     ),  (S62) 

   
   

  
        .     (S63) 

In Equations S61-S62,    is the hydrodynamic drag coefficient of the hair bundle, 



a  is the slope 

of the force-velocity relation of the adaptation motors,    ,    , and     are elastic coefficients 

for the gating springs, the stereociliary pivots, and linkages that limit the extent of adaptation, 

respectively, D is the gating swing, FMAX is the maximal force that adaptation motors produce at 

stall, and S is the strength of calcium-mediated feedback on the motor force.  Without loss of 

generality, at steady state, we set the transduction channels’ open probability   
      when 

   .  At this operating point, the steady-state positions of the hair bundle and of the adaptation 

motors are  ̅   (      ⁄ )  (    ⁄ ),  ̅     {   ⁄ [  (      ⁄ )]  (    ⁄ )}, 

respectively, and      (       ) [  (    ⁄ )]⁄ , in which     is the intrinsic energy 

difference between open and closed states of the channels.  In the presence of an external force 

(   ), the open probability of transduction channels at steady state is given by  



28 
 

    {     [ (    )  ⁄ ]}  ,    (S64) 

where   (   ) (     ⁄ )⁄ , N is the number of transduction elements, and     is the thermal 

energy.  Equation S63 accounts for the finite activation kinetics of the transduction channels (SI 

Appendix section 4).  The characteristic timescale    of channel activation depends on position 

and can be written as 

      [   ( (    )  ⁄ )      ( (   ) (    )  ⁄ )]⁄   ,  (S65) 

where       is the fractional distance of the transition state from the closed state and   is the 

activation time for small deflections near an open probability of 1/2. 

We considered three cases (see Fig. 4 in main text).  Case I: the transduction machinery is 

fully functional (Fig. 4C and black solid line in Figs. 4E-F).  In this case, we imposed a calcium-

feedback strength S = 0.8 on the adaptation motor force (21-22).  Case II: the channels can open 

and close but there is no adaptation (Figs. 4A-B and dotted lines in Figs. 4E-F).  To describe the 

behavior of a passive hair bundle, we set      at all times.  Our choice of the operating point 

  
      when there is no external force then yields  ̅    and  ̅       ⁄ .  Case III: the 

adaptation motors can move but the transduction channels are blocked in an open state (Fig. 4D 

and red trace in Fig. 4E).  Accordingly, we imposed in our simulations that there is no calcium 

feedback (S = 0) and that the channels’ open probability is fixed at      at all times.  At stady 

state, with   
     , we then have  ̅          (       ) (       )⁄    and  ̅  

        ⁄ .  The two coupled Equations S62-S63 were integrated by the Euler method.  

Parameter values are listed in Table S1.  
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Table S1:    Variables definition and parameter values. 

All displacements and forces are expressed along the horizontal axis of a bundle’s vertical plane 

of bilateral symmetry that contains the point of application of the external force.  Note that 

because bundle movements are transmitted to the transduction apparatus via oblique tip links, 

there is a geometrical projection factor γ = 0.14 (8, 19) between the gating-spring extension x and 

the bundle deflection X:      .  Similarly, a change in gating-spring tension      creates an 

horizontal force on the hair bundle given by       . 

 

Variable Definition 
Relation to other 

variables 
Value 

  
  

Channel open probability at steady 

state with no external force 
 0.5 

N Number of transduction elements  50 

D 
(nm) 

Reduction of gating-spring 

extension upon channel opening 
 50 

  
Fractional distance to the transition 

state 
 0.5 

    
(zJ) 

Intrinsic energy difference between 

open and closed states of the 

channels 
 40 

  
(µs) 

Channel activation time near an 

open probability of 0.5 
 500 

   
(µN∙s/m) 

Hydrodynamic drag coefficient of 

the hair bundle 
 0.1 

    
(mN/m) 

Combined stiffness of the gating 

springs 
 0.8 

    
(mN/m) 

Combined stiffness of the 

stereociliary pivots 
 0.2 

   
(mN/m) 

Hair-bundle stiffness with       

or 1 
           1 

Z 
(pN) 

Reduction of tip-link tension upon 

channel opening 
        ⁄  0.8 

    
(zJ) 

Thermal energy  4 

  
(nm) 

Characteristic lengthscale of 

mechano-sensitivity 
  (   )  ⁄  5 

   
(µN∙s/m) 

Slope of the force-velocity relation 

of the adaptation motor 
 10 

     
(pN) 

Maximal force that the adaptation 

motor produces at stall 

       

  (    ⁄ )
 66.67 

S Ca
2+

-feedback strength   0.8 or 0 

    
(mN/m) 

Combined stiffness of extent 

springs 
 1.6 
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